С чем реагирует теллур
Теллур
(молярная масса)
(первый электрон)
Теллур — химический элемент 16-й группы (по устаревшей классификации — главной подгруппы VI группы, халькогены), 5-го периода в периодической системе, имеет атомный номер 52; обозначается символом Te (лат. Tellurium ), относится к семейству металлоидов.
Содержание
История
Впервые был найден в 1782 году в золотоносных рудах Трансильвании горным инспектором Францем Йозефом Мюллером (впоследствии барон фон Райхенштейн), на территории Австро-Венгрии. В 1798 году Мартин Генрих Клапрот выделил теллур и определил важнейшие его свойства.
Происхождение названия
От латинского tellus, родительный падеж telluris, Земля (название предложил Мартин Клапрот).
Нахождение в природе
Содержание в земной коре 1⋅10 −6 % по массе. Известно около 100 минералов теллура. Наиболее часты теллуриды меди, свинца, цинка, серебра и золота. Изоморфная примесь теллура наблюдается во многих сульфидах, однако изоморфизм Te — S выражен хуже, чем в ряду Se — S, и в сульфиды входит ограниченная примесь теллура. Среди минералов теллура особое значение имеют алтаит (PbTe), сильванит (AgAuTe4), калаверит (AuTe2), гессит (Ag2Te), креннерит [(Au, Ag)Te], петцит (Ag3AuTe2), мутманнит [(Ag, Au)Te], монбрейит (Au2Te3), нагиагит ([Pb5Au(Te, Sb)]4S5), тетрадимит (Bi2Te2S). Встречаются кислородные соединения теллура, например, TeO2 — теллуровая охра.
Встречается самородный теллур и вместе с селеном и серой (японская теллуристая сера содержит 0,17 % Те и 0,06 % Se).
Типы месторождений
Большая часть упомянутых минералов развита в низкотемпературных золото-серебряных месторождениях, где они обычно выделяются после основной массы сульфидов совместно с самородным золотом, сульфосолями серебра, свинца, а также с минералами висмута. Несмотря на развитие большого числа теллуровых минералов, главная масса теллура, извлекаемого промышленностью, входит в состав сульфидов других металлов. В частности, теллур в несколько меньшей степени, чем селен, входит в состав халькопирита медно-никелевых месторождений магматического происхождения, а также халькопирита, развитого в медноколчеданных гидротермальных месторождениях. Теллур находится также в составе пирита, халькопирита, молибденита и галенита месторождений порфировых медных руд, полиметаллических месторождений алтайского типа, галенита свинцово-цинковых месторождений, связанных со скарнами, сульфидно-кобальтовых, сурьмяно-ртутных и некоторых других. Содержание теллура в молибдените колеблется в пределах 8—53 г/т, в халькопирите 9—31 г/т, в пирите — до 70 г/т.
Получение
Основной источник — шламы электролитического рафинирования меди и свинца. Шламы подвергают обжигу, теллур остается в огарке, который промывают соляной кислотой. Из полученного солянокислого раствора теллур выделяют, пропуская через него сернистый газ SO2.
Для разделения селена и теллура добавляют серную кислоту. При этом выпадает диоксид теллура ТеО2, а H2SeO3 остается в растворе.
Из оксида TeO2 теллур восстанавливают углём.
Для очистки теллура от серы и селена используют его способность под действием восстановителя (Al, Zn) в щелочной среде переходить в растворимый дителлурид динатрия Na2Te2:
Для осаждения теллура через раствор пропускают воздух или кислород:
Для получения теллура особой чистоты его хлорируют
Образующийся тетрахлорид очищают дистилляцией или ректификацией. Затем тетрахлорид гидролизуют водой:
а образовавшийся TeO2 восстанавливают водородом:
Физические свойства
Изотопы
Известны 38 нуклидов и 18 ядерных изомеров теллура с атомными числами от 105 до 142. Теллур — самый лёгкий элемент, чьи известные изотопы подвержены альфа-распаду (изотопы от 106 Te до 110 Te). Атомная масса теллура (127,60 г/моль) превышает атомную массу следующего за ним элемента — йода (126,90 г/моль).
В природе встречается восемь изотопов теллура. Шесть из них, 120 Te, 122 Te, 123 Te, 124 Te, 125 Te и 126 Te — стабильны. Остальные два — 128 Te и 130 Te — радиоактивны, оба они испытывают двойной бета-распад, превращаясь в изотопы ксенона 128 Xe и 130 Xe, соответственно. Стабильные изотопы составляют лишь 33,3 % от общего количества теллура, встречающегося в природе, что является возможным благодаря чрезвычайно долгим периодам полураспада природных радиоактивных изотопов. Они составляют от 7,9⋅10 20 до 2,2⋅10 24 лет. Изотоп 128 Te имеет самый долгий подтверждённый период полураспада из всех радионуклидов — 2,2⋅10 24 лет или 2,2 септиллиона лет, что примерно в 160 триллионов раз больше оценочного возраста Вселенной.
Химические свойства
В расплавленном состоянии теллур довольно инертен, поэтому в качестве контейнерных материалов при его плавке применяют графит и кварц.
Теллур образует соединение с водородом при нагревании, легко реагирует с галогенами, взаимодействует с серой, фосфором и металлами. При взаимодействии с концентрированной серной кислотой образует сульфит. Образует слабые кислоты: теллурводородную (H2Te), теллуристую (H2TeO3) и теллуровую (H6TeO6), большинство солей которых плохо растворимы в воде.
Применение
Сплавы
Теллур применяется в производстве сплавов свинца с повышенной пластичностью и прочностью (применяемых, например, при производстве кабелей). При введении 0,05 % теллура потери свинца на растворение под воздействием серной кислоты снижаются в 10 раз, и это используется при производстве свинцово-кислотных аккумуляторов. Также важно то обстоятельство, что легированный теллуром свинец при обработке пластической деформацией не разупрочняется, и это позволяет вести технологию изготовления токоотводов аккумуляторных пластин методом холодной высечки и значительно увеличить срок службы и удельные характеристики аккумулятора.
В составе сплава CZT (теллурид кадмия-цинка, CdZnTe) применяется в производстве детекторов рентгеновского и гамма- излучений, которые работают при комнатной температуре.
Термоэлектрические материалы
Также велика его роль в производстве полупроводниковых материалов и, в частности, теллуридов свинца, висмута, сурьмы, цезия. Очень важное значение в ближайшие годы приобретёт производство теллуридов лантаноидов, их сплавов и сплавов с селенидами металлов для производства термоэлектрогенераторов с весьма высоким (до 72—78 %) КПД, что позволит применить их в энергетике и в автомобильной промышленности.
Так, например, недавно обнаружена очень высокая термо-ЭДС в теллуриде марганца (500 мкВ/К) и в его сочетании с селенидами висмута, сурьмы и лантаноидов, что позволяет не только достичь весьма высокого КПД в термогенераторах, но и осуществить уже в одной ступени полупроводникового холодильника охлаждение вплоть до области криогенных (температурный уровень жидкого азота) температур и даже ниже. Лучшим материалом на основе теллура для производства полупроводниковых холодильников в последние годы явился сплав теллура, висмута и цезия, который позволил получить рекордное охлаждение до −237 °C. В то же время, как термоэлектрический материал, перспективен сплав теллур-селен (70 % селена), который имеет коэффициент термо-ЭДС около 1200 мкВ/К.
Узкозонные полупроводники
Совершенно исключительное значение также получили сплавы КРТ (кадмий-ртуть-теллур), которые обладают фантастическими характеристиками для обнаружения излучения от стартов ракет и наблюдения за противником из космоса через атмосферные окна (не имеет значения облачность). КРТ является одним из наиболее дорогих материалов в современной электронной промышленности.
Высокотемпературная сверхпроводимость
Ряд систем, имеющих в своем составе теллур, недавно обнаружили существование в них трёх (возможно, четырёх) фаз, сверхпроводимость в которых не исчезает при температуре несколько выше температуры кипения жидкого азота.
Производство резины
Отдельной областью применения теллура является его использование в процессе вулканизации каучука.
Производство халькогенидных стёкол
Теллур используется при варке специальных марок стекла (где он применяется в виде диоксида), специальные стёкла, легированные редкоземельными металлами, применяются в качестве активных тел оптических квантовых генераторов.
Кроме того, некоторые стёкла на основе теллура являются полупроводниками, это свойство находит применение в электронике.
Специальные сорта теллурового стекла (достоинство таких стёкол — прозрачность, легкоплавкость и электропроводность), применяются в конструировании специальной химической аппаратуры (реакторов).
Источники света
Ограниченное применение теллур находит для производства ламп с его парами — они имеют спектр, очень близкий к солнечному.
Сплав теллура применяется в перезаписываемых компакт-дисках (в частности, фирмы Mitsubishi Chemical Corporation марки «Verbatim») для создания деформируемого отражающего слоя.
Биологическая роль
Микроколичества теллура всегда содержатся в живых организмах, его биологическая роль не выяснена.
Физиологическое действие
Теллур и его летучие соединения токсичны. Попадание в организм вызывает тошноту, бронхиты, пневмонию. ПДК в воздухе колеблется для различных соединений 0,007—0,01 мг/м³, в воде 0,001—0,01 мг/л. Канцерогенность теллура не подтверждена.
В целом соединения теллура менее токсичны, чем соединения селена.
При отравлениях теллур выводится из организма в виде отвратительно пахнущих летучих теллурорганических соединений — алкилтеллуридов, в основном диметилтеллурида (CH3)2Te. Их запах напоминает запах чеснока, поэтому при попадании в организм даже малых количеств теллура выдыхаемый человеком воздух приобретает этот запах, что является важным симптомом отравления теллуром.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |||||||||||||||
1 | H | He | ||||||||||||||||||||||||||||||
2 | Li | Be | B | C | N | O | F | Ne | ||||||||||||||||||||||||
3 | Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||||||||||
4 | K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||||||||||||||
5 | Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||||||||||||||
6 | Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn |
7 | Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og |
8 | Uue | Ubn | Ubu | Ubb | Ubt | Ubq | Ubp | Ubh | Ubs |
Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu,
Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2,
W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au
Теллур – самый коварный элемент таблицы Менделеева
Элемент таблицы Менделеев теллур (Th) – можно смело назвать самым коварным. Ведь, подержав его в пальцах без перчаток несколько секунд, человек получает массу неприятностей. Однако этот редкий полуметалл является ценным для создания современных устройств и гаджетов.
Элемент Теллур
В периодической таблице химических элементов Th располагается в 16 группе, сразу под Селеном. В отличие от вышестоящих элементов он причисляется уже к классу плоуметаллов.
Теллура в земной коре найдено крайне мало. Его количество сравнимо с платиной. Ученые считают, что редким этот элемент является потому, что в первые периоды формирования нашей планеты его соединения взаимодействовали с водой, образуя летучий гидрит теллура. Это соединение легко улетучивалось в открытый космос.
В настоящее время полуметалл теллур получают в процессе электроосаждения меди. Это побочный продукт. Он оседает в виде теллуридов драгоценных металлов. Позже, их восстанавливают до получение металлического Th. После очистки кусочки этого элемента становятся похожи на куски любого другого металла.
Коварное свойство полуметалла
Узнать о том, что перед вами теллур можно, подержав несколько секунд этот полуметалл в руках. Мельчайшие его частицы легко связываются с молекулами кожного жира, и легко проникают внутрь организма. Это не является смертельной угрозой для человека.
Но, люди знакомые с этим элементом стараются всячески избегать его попадания на кожу. Дело в том, что в организме он метеболизируется до метадетилтаурида. В результате этих процессов у человека появляется очень неприятный чесночный запах изо рта, при том, что чеснока в пищу, он не употреблял. Запах может сохраняться до нескольких недель.
Какими еще свойствами обладает теллур
Элемент Th может существовать в двух формах: кристаллической и аморфной (выглядит, как черный порошок).
Кристаллическая форма имеет температуру плавления 450˚С. Очень слабо реагирует элемент с концентрированной серной кислотой. Аморфная форма быстрее вступает в реакцию с кислотами.
Многие соединения теллура токсичны для человека.
Кроме кислот вещество может реагировать с некоторыми металлами. Например, с натрием в процессе нагревания. В результате реакции получается теллурид натрия. Это вещество используется в процессах органического синтеза.
Продукт, получаемый при взаимодействии с кадмием, называется теллурид кадмия. Он используется для создания тонкопленочных солнечных панелей нового типа.
Соединения германия и теллура используется для создания устройств оперативной памяти, обладающих высокой скоростью.
Где используется еще?
Смешанный оксид теллура используется в качестве одного из слоев перезаписываемых дисков CD и DVD.
Оксид теллура используется для обнаружения бактерий дифтерии при проведении клинических анализов. Это помогает обнаружить заболевание у человека и правильно подобрать лечение.
Если подвести итог, то можно сказать, что, несмотря на коварство, Th является очень полезным элементом. С его помощью можно создавать современные технические устройства и приспособления: быстроокупаемые солнечные батареи и супербыструю оперативку.
Теллур, свойства атома, химические и физические свойства
Теллур, свойства атома, химические и физические свойства.
127,60(3) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 4
Теллур — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 52. Расположен в 16-й группе (по старой классификации — главной подгруппе шестой группы), пятом периоде периодической системы.
Общие сведения:
101 | Название | Теллур |
102 | Прежнее название | |
103 | Латинское название | Tellurium |
104 | Английское название | Tellurium |
105 | Символ | Te |
106 | Атомный номер (номер в таблице) | 52 |
107 | Тип | Неметалл |
108 | Группа | Полуметалл, халькоген |
109 | Открыт | Франц Йозеф Мюллер, Австрия, 1782 г. |
110 | Год открытия | 1782 г. |
111 | Внешний вид и пр. | Хрупкое, серебристо-белое вещество с металлическим блеском |
112 | Происхождение | Природный материал |
113 | Модификации | |
114 | Аллотропные модификации | 2 аллотропные модификации: |
— α-теллур (кристаллический, металлический теллур) с гексагональной кристаллической решёткой,
Теллур
(молярная масса)
(первый электрон)
(по Полингу)
Содержание
История
Происхождение названия
От латинского tellus, родительный падеж telluris, Земля.
Нахождение в природе
Содержание в земной коре 1·10 –6 % по массе. Известно около 100 минералов теллура. Важнейшие из них: алтаит PbTe, сильванит AgAuTe4, калаверит AuTe2, тетрадимит Bi2Te2S. Встречаются кислородные соединения теллура, например ТеО2 — теллуровая охра.
Встречается самородный теллур и вместе с селеном и серой (японская теллуристая сера содержит 0,17 % Те и 0,06 % Se).
Получение
Для разделения селена и теллура добавляют серную кислоту. При этом выпадает диоксид теллура ТеО2, а H2SeO3 остается в растворе.
Из оксида ТеО2 теллур восстановливают углем.
Для очистки теллура от серы и селена используют его способность под действием восстановителя (Al) в щелочной среде переходить в растворимый дителлурид динатрия Na2Te2:
Для осаждения теллура через раствор пропускают воздух или кислород:
Для получения теллура особой чистоты его хлорируют
а образовавшийся ТеО2 восстанавливают водородом:
К сожалению, теллур — редкий элемент, и значительный спрос при малом объёме добычи определяет высокую его цену (около 200—300 долл. за кг в зависимости от чистоты), но, несмотря на это, диапазон областей его применения постоянно расширяется.
Физико-химические свойства
Теллур — хрупкое серебристо-белое вещество с металлическим блеском. В тонких слоях на просвет красно-коричневый, в парах — золотисто-желтый. Полупроводник p-типа. Электропроводность увеличивается при освещении.
Устойчив на воздухе при комнатной температуре даже в мелкодисперсном состоянии. При нагревании на воздухе сгорает голубовато-зеленым пламенем с образованием диоксида TeO2.
При 100—160 °C окисляется водой: Te+2H2O= TeO2+2H2
При кипячении в щелочных растворах теллур диспропорционирует с образование теллуридов и теллуритов:
С соляной и разбавленной серной кислотами Te не взаимодействует. Концентрированная H2SO4 растворяет Te, образующиеся катионы Te4 2+ окрашивают раствор в красный цвет.
Разбавленная HNO3 окисляет Te до теллуристой кислоты H2TeO3:
С галогенами (кроме фтора) образует тетрагалогениды. Фтор окисляет Te до гексафторида TeF6.
Теллуроводород H2Te — бесцветный, очень ядовитый газ с неприятным запахом, образуется при гидролизе теллуридов.
Соединения теллура (+2) неустойчивы и склонны к диспропорционированию :
Применение
Сплавы
Термоэлектрические материалы
Монокристалл теллурида висмута
Узкозонные полупроводники
Совершенно исключительное значение также получили сплавы КРТ (кадмий-ртуть-теллур), которые обладают фантастическими характеристиками для обнаружения излучения от стартов ракет и наблюдения за противником из космоса через атмосферные окна (не имеет значение облачность). КРТ является одним из наиболее дорогих материалов в современной электронной промышленности.
Высокотемпературная сверхпроводимость
Ряд систем, имеющих в своем составе теллур, недавно обнаружили существование в них трёх (возможно четырёх) фаз, сверхпроводимость в которых не исчезает при температуре несколько выше температуры кипения жидкого аммиака.
Производство резины
Производство халькогенидных стёкол
Варке специальных марок стекла (где он применяется в виде двуокиси), кроме того, некоторые стёкла на основе теллура являются полупроводниками (достоинство таких стёкол — прозрачность, легкоплавкость и электропроводность), что, в свою очередь, нашло применение в конструировании специальной химической аппаратуры ( реакторов ).
Источники света
Ограниченное применение теллур находит для производства ламп с его парами — они имеют спектр, очень близкий к солнечному.
Сплав теллура применяется в перезаписываемых компакт-дисках (в частности, фирмы Mitsubishi Chemical Corporation марки «Verbatim») для создания деформируемого отражающего слоя.
Биологическая роль
Микроколичества теллура всегда содержатся в живых организмах, его биологическая роль не выяснена.
Физиологическое действие
Ссылки
az:Tellur bs:Telurijum ca:Tel·luri co:Telluriu cs:Tellur da:Tellur de:Tellur el:Τελλούριο en:Tellurium eo:Teluro es:Telurio et:Telluur fi:Telluuri fr:Tellure he:טלור hr:Telurij hu:Tellúr id:Telurium io:Telurio is:Tellúr it:Tellurio ja:テルル jbo:tedjicmu ko:텔루륨 la:Tellurium lb:Tellur lt:Telūras lv:Telūrs nl:Telluur nn:Tellur no:Tellur oc:Telluri pl:Tellur pt:Telúrio sh:Telur simple:Tellurium sk:Telúr sl:Telur sr:Телур sv:Tellur th:เทลลูเรียม tr:Tellür uk:Телур uz:Tellur vi:Telua zh:碲