С чем реагирует перекись в крови

С чем реагирует перекись в крови

Иногда вырастали растения с новыми ценными свойствами. Часто эти свойства были совсем не такие, на которые рассчитывали селекционеры изначально. Поэтому семена сначала облучали, обрабатывали мутагенами, а потом просто смотрели, что вырастет.

Можно было, например, поставить задачу вывести морозоустойчивый сорт. И среди горсти облученного зерна могли вырасти отдельные экземпляры, которые давали морозоустойчивое потомство. Но одновременно эти растения будут низкоурожайными. Или давать зерно такого низкого качества, что соблазнится на него разве что умирающая с голоду мышь. Или будут подвержены болезням и вредителям, к которым устойчивы стандартные сорта. Зато другое зернышко из этой партии даст жизнь растению, которое отличается высокой урожайностью и средней морозостойкостью. Другие характеристики тоже не хуже.

Хотели вывести морозоустойчивый сорт, а вывели высокоурожайный.

Демонстрационных химических опытов это касается тем более. Запланировал я провести опыты по растворению позолоты. Для этого специально держал кусочки битого фарфора с позолотой. Вчера думал попробовать действие смеси перекиси водорода и соляной кислоты на золото. Оказалось, что кусочек фарфора немного не пролазит в стакан. Когда обламывал края плоскогубцами, сильно порезал руку.

Между упомянутыми двумя экспериментами провел еще один: развел пергидроль в 10 раз водой, чтобы получить примерно 3% раствор (аналог аптечной перекиси) и вылил этот раствор на рану, из которой тогда еще шла кровь. Результат: бурное разложение перекиси водорода с активным образованием пены.

Кровь вызывает активное разложение 3% перекиси, но при контакте крови с 30% перекисью начинается вялая реакция, которая вскоре прекращается. Больше концентрация реагирующего вещества не всегда означает, что реакция пойдет быстрее.

Вывод простой: 30% перекись водорода быстро инактивирует (разрушает) фермент каталазу, в результате реакция разложения перекиси практически прекращается.

Источник

Перекись водорода : инструкция по применению

Описание

Бесцветная прозрачная жидкость.

Состав

Флакон 40 мл содержит:

действующее вещество: перекись водорода – 1,2 г;

вспомогательные вещества: натрия бензоат, вода очищенная.

Флакон 100 мл содержит:

действующее вещество: перекись водорода – 3 г;

вспомогательные вещества: натрия бензоат, вода очищенная.

Флакон 200 мл содержит:

действующее вещество: перекись водорода – 6 г;

вспомогательные вещества: натрия бензоат, вода очищенная.

Флакон 400 мл содержит:

действующее вещество: перекись водорода – 12 г;

вспомогательные вещества: натрия бензоат, вода очищенная.

Фармакотерапевтическая группа

Прочие антисептические и дезинфицирующие средства.

Фармакологическое действие

Антисептическое средство из группы оксидантов. При контакте перекиси водорода с поврежденной кожей или слизистыми оболочками высвобождается активный кислород, который обладает противомикробным, дезодорирующим, депигментирующим свойством, при этом происходит механическое очищение и инактивация органических веществ (протеины, кровь, гной). Антисептическое действие не является стерилизующим, при его применении происходит лишь временное уменьшение количества микроорганизмов. Обильное пенообразование способствует тромбообразованию и остановке кровотечений из мелких сосудов.

Показания к применению

Дезинфектант для обработки небольших порезов, ран (в том числе гнойных), изъязвлений кожи, ожогов.

Для остановки незначительных кровотечений (поверхностных, носовых).

Для полоскания полости рта и горла (при стоматите, ангине).

При гинекологических заболеваниях с целью дезинфекции.

Способ применения и дозы

Для наружного применения используют раствор 30 мг/мл; для полоскания полости рта и горла, нанесения на слизистые оболочки – раствор 2,5 мг/мл (раствор 30 мг/мл разводят водой в соотношении 1:11). Неразбавленный раствор не применяют для обработки слизистых оболочек. Поврежденные участки кожи или слизистой оболочки обрабатывают ватным или марлевым тампоном, смоченным раствором лекарственного средства. Тампоны следует держать пинцетом. Возможно струйное орошение раневой поверхности.

Побочное действие

При обработке раны возможно возникновение чувства жжения.

При длительном применении для полосканий возможна гипертрофия сосочков языка, потеря чувствительности.

Возможно проявление местных аллергических реакций при индивидуальной непереносимости лекарственного средства.

В случае возникновения побочных реакций, в т.ч. не указанных в данной инструкции, необходимо обратиться к врачу.

Противопоказания

Повышенная чувствительность к компонентам лекарственного средства.

Не используется в закрытых полостях тела и хирургических ранах из-за опасности газовой эмболии, как следствия поступления свободного кислорода в циркуляцию.

Не используется для дезинфекции хирургических инструментов (частей эндоскопов) и клизм.

Передозировка

Случайное попадание внутрь может стать причиной болезненности в глотке, желудочных сокращений и рвоты. Внезапное поступление свободного кислорода в желудочно-кишечный тракт может вызвать острое раздувание желудка и внутреннее кровотечение. Разрешается пить воду. Поступление больших объемов перекиси может привести к газовой эмболии, являющейся следствием высвобождения кислорода в желудок.

Меры предосторожности

Только для наружного применения. Не рекомендуется использовать лекарственное средство под окклюзионные повязки. Следует избегать попадания в глаза. Не применять для орошения закрытых полостей и проникающих ран во избежание высвобождения свободного кислорода в циркуляцию и возникновения газовой эмболии.

Не стабилен в щелочной среде, в присутствии щелочей металлов, сложных радикалов некоторых оксидантов, а также на свету и в тепле. Осветляет ткань.

Обработка раны раствором перекиси водорода не гарантирует защиту от заражения столбняком и др. раневой инфекцией.

Применение в педиатрической практике.

Для полоскания полости рта и горла применяется у детей с 12 лет. Применение у детей младшего возраста допускается только по показаниям врача.

Применение в гериатрической практике.

Нет достоверных данных.

Применение у лиц с нарушением функции печени и почек.

Нет достоверных данных.

Применение во время беременности и в период лактации

Нет достоверных данных. Перед применением лекарственного средства во время беременности и в период лактации необходимо проконсультироваться с врачом.

Источник

С чем реагирует перекись в крови

С чем реагирует перекись в крови. Смотреть фото С чем реагирует перекись в крови. Смотреть картинку С чем реагирует перекись в крови. Картинка про С чем реагирует перекись в крови. Фото С чем реагирует перекись в крови

Гипоксическое повреждение клеток коры головного мозга, возникающее вследствие исчезновения кислорода в нем, является непосредственной причиной биологической смерти большинства людей и животных на Земле [9-3, 23, 28]. Поэтому именно кислород является настоящим антигипоксантоми самым универсальным антисмертельным средством [10, 16, 24].Тем не менее, современные медицинские технологии применения кислородав роли оживляющего средства приклинической смертиимеют низкую эффективность [8, 11, 19, 20]. На наш взгляд, причиной низкой клинической эффективности кислорода является то, что онвводитсяв виде газа и вводится не в головной мозг и даже не в кровь, а в дыхательные пути пациентов [10, 19, 21].

В то же время, очевидно, что защитить клетки коры головного мозга от гипоксического поврежденияможно только с помощью повышения концентрации кислорода внутри клеток либо с помощью уменьшения их температуры (охлаждения вплоть до 0°С) [2, 3, 9, 10, 11, 12, 14, 15]. Из этого следует, что для предотвращения клинической смерти кислород следует вводить не в легкие, и даже не в кровь, а непосредственно в ткань головного мозга!

Тем не менее, перспективность замены газообразного кислорода в воде и в тканях человека и животных на органическую кислоту перекиси водорода с целью продления жизни людей и животных изучена недостаточно.

Целью исследования являетсядемонстрация фармакологической активности раствора перекиси водорода.

Материалы и методы исследования

Опыты по изучению возможностинасыщения кислородом эритроцитов венозной крови человека с помощью раствора перекиси водорода проведены в лабораторных условиях при температуре +25°Сс 35 порциями стандартной донорской венозной крови. Для этого каждаяпорция крови объемом по40 млпомещаласьв прозрачные полиэтиленовые пакетыобъемом по 100 мл. Каждый полиэтиленовый пакет имел два нижних отверстия.С помощью штативов, установленных на лабораторном столе, пакеты с кровью были подвешены вертикально в положении отверстиями вниз и с вставленными в них инъекционными иглами, одна из которых была соединена с устройством для переливания крови, другая – со шприцем, заполненным одним из выбранных растворов при комнатной температуре. Затем в каждую емкость из шприца вводились исследуемыерастворы в объеме по 5 мл каждый, после чего наблюдали на глаз и с помощью УЗИ за состоянием крови на протяжении 60 минут.

Ультразвуковое исследование консервированной крови, находящейся внутри пластикового пакета,проведено с использованием прибораэкспертного класса ALOKA SSD – ALPHA 10. В качестве датчика был использован стандартный датчик конвексного типа с частотой 3 – 7 МГц [4, 13]. Ультразвуковые исследования проведены по стандартной методике[13,17].

В опытах было исследовано влияние следующих растворов:

1. Раствор 0,3% перекись водорода и 1,7% натрия гидрокарбоната;

2. Раствор 0,3% перекиси водорода, 0,85% натрия хлорида и 0,10% натрия гидрокарбоната;

3. Раствор 0,29% перекиси водорода, 0,85% натрия хлорида и 0,10% натрия гидрокарбоната;

4. Раствор 0,10% перекиси водорода, 0,85% натрия хлорида и 0,10% натрия гидрокарбоната;

5. Раствор 0,06% перекиси водорода, 0,85% натрия хлорида и 0,10% натрия гидрокарбоната;

6. Раствор 0,05% перекиси водорода, 0,85% натрия хлорида и 0,10% натрия гидрокарбоната;

7. Раствор 0,04% перекиси водорода, 0,85% натрия хлорида и 0,10% натрия гидрокарбоната.

Осмотическая активность растворов была определена с помощью осмометра марки VAPRO 5600 (USA. В качестве контроля был использован изотонический раствор 0,9% натрия хлорида [5, 6, 22].

Опыты по изучению динамики состояния рыб при острой смертельной гипоксиипроведены на 100 живых аквариумных рыбках породы гуппи и голубые неоны обоего пола массой по 280-330 мг. Моделирование острой гипоксии у рыбок достигалось путем помещения каждой рыбки в пресную воду при температуре +15 либо +25°С, находящуюся внутри отдельной пластиковой прозрачной герметичной емкости объемом 5 мл (в этой роли были использованы пластиковые инъекционные шприцы). Проведено 2 серии опытов. В контрольной серии опытов регистрировалась динамика двигательной активности рыб, цвета их плавников идлительность нахождения их живыми в обычной пресной воде внутри герметичной емкости после дополнительного введения 10 мкл дистиллированной воды. В опытной серии проводились аналогичные исследования, но в воду к рыбам вводилось10 мкл дистиллированной воды, содержащей различные концентрации перекиси водорода. При этом проводилась киносъемка двигательной активности рыб вплоть до их полного обездвиживания и смерти [13, 14, 16, 17].

Статистическая обработка результатов проведена с помощью программы BIOSTAT по общепринятой методике.

Результаты исследования
и их обсуждение

Предварительно нами был проведен анализ состава известных растворов, содержащих перекись водорода. Оказалось, что все они представляют собой санитарно-гигиенические средства, предназначенные исключительно для наружного примененияс целью санации гнойных ран.Было выяснено, что все известные антисептические, дезинфицирующие и санирующие растворысодержат перекись водорода в концентрациях, превышающих 0,3%. Помимо перекиси водорода в состав многих известных растворов входит гидрокарбонат натрия, который включается для умеренного защелачивания, оптимизации щелочного гидролиза и разжижения густых гнойных масс. С этой целью растворы включают гидрокарбонат натрия в концентрации 1,7 – 10% [22].

Предполагалось, что известные растворы перекиси водорода и натрия гидрокарбоната при взаимодействии с кровью вызовут бурное образование газа кислорода и кровавой пены.Для проверки данного предположения была проведена серия опытов по взаимодействию с кровью раствора 0,3% перекиси водорода и 1,7% натрия гидрокарбоната. Опыты были проведены с этим раствором потому, чтоэтот раствор имеет самые низкие концентрации ингредиентов и поэтому именно он должен обладать самой низкой агрессивностью в отношении крови.

Однако полученные нами результаты показали, что кровь при взаимодействии с этим растворомбурно вспенивалась, хотя и немедленно изменяла свой цвет с темно-вишневого на алый. Причем, кровавая пена алого цвета тут же увеличивала внутренний объем содержимого пакета практически в 2 раза и пузырилась. Кровавая пена и пузыри сохранялись 16,3 ± 0,1 минут (Р ≤ 0,05, n = 5), после чего порция крови приобретала вид жидкости, лишенной пузырьков газа, и сохраняла алый цвет на протяжении всего периода наблюдения.

Эти результаты убедили нас в том, что бурное образование кровавой пены происходит из-за активного внутритканевого образования пузырьков газа кислорода под влияниемкаталазной реакции в условиях значительной щелочности, поскольку перекись водорода и натрия гидрокарбонат находятся в повышенных концентрациях. Дополнительное образование внутри пакета с кровью равного объема кровавой пены, которая безудержно перемещается во всех возможных направлениях, исключает безопасное применение раствора 0,3% перекиси водорода и 1,7% натрия гидрокарбоната для инъекционной сатурации кислородом консервированной венозной крови.

В связи с этим было решено, с одной стороны, уменьшить концентрацию перекиси водорода и натрия гидрокарбоната в растворе, а с другой стороныповысить безопасность средства за счет придания раствору величины осмотической активности в пределах 280 мОсмоль/л воды.Для этогобыло решено взять за основу изотонический раствор 0,9% натрия хлорида, который затем модифицировали и придали ему физиологическую щелочность и буферность с помощью натрия гидрокарбоната в концентрации 0,1%. В связи с тем, что раствор 0,1% натрия гидрокарбоната обладает самостоятельной осмотической активностью в пределах 35 мОсмоль/л воды, было решено уменьшить концентрацию натрия хлорида в растворе.Теоретические расчеты показали, что для сохранения осмотической, щелочной и буферной активности в пределах физиологического уровня раствор должен содержать0,85% натрия хлорида и 0,1% натрия гидрокарбоната. Затем было проведено определение осмотической активности указанного раствора прямым методом. Полученные нами результаты подтвердили это предположение.

После этого оставалось определить то, в какой концентрации должна находиться в этом растворе перекись водорода. С этой целью нами были проведены лабораторные исследования с донорской кровью и модифицированными изотоническим раствором 0,85% натрия хлорида и 0,10% натрия гидрокарбоната, в который дополнительновводилась перекись водорода в концентрации0,3%, 0,29%, 0,10% 0,06%, 0,05% или 0,04%.

Первая серия опытов была проведена с раствором 0,85% натрия хлорида, 0,10% натрия гидрокарбоната и 0,30% перекиси водорода. Показано, что сразу же после введения в кровь этого раствора в крови началось внутритканевое газообразование и бурное формирование кровавой алой пены. При этом содержимое пакета разделилось на две фракции: на жидкую кровь, оставшуюся внизу, и кровавую пену, оказавшуюся вверху. В результате пакет разбух из-за того, что объем содержимого увеличился за счет газа и пены. Процесс образования пузырьков газа в крови и пены прекратился через 10,4 ± 0,5 минут (Р ≤ 0,05, n = 5) после введения. Затем еще через 3,3 ± 0,05 минут (Р ≤ 0,05, n = 5) почти вся кровавая пена разрушилась, кровь заняла собой нижнюю часть пакета и на протяжении 60 минут наблюдения оставалась алого цвета.

Вторая серия опытов была проведена с раствором 0,85% натрия хлорида, 0,10% натрия гидрокарбоната и 0,29% перекиси водорода. Показано, что через 4,5 ± 0,15 секунд (Р ≤ 0,05, n = 5) после его введения в пакет с кровьюв нейначиналось умеренное внутритканевое газообразование, под влиянием которого через 14,3 ± 0,7 секунд (Р ≤ 0,05, n = 5) темно-вишневый цвет крови менялся на алый цвет. Ультразвуковое исследование крови, которое было проведено сквозь стенку пакета, показало, что в ней происходило образование пузырьков газа и уменьшение ультразвуковой эхогенности крови. Пузырьки газа имели мелкие размеры, постепенно перемещались кверху, размещались в верхнем слое крови и через несколько секунд лопались без образования существенной массы пены. Через 3 минуты после инъекции раствора в кровь было произведено выливание крови из пакета через вторую инъекционную иглу с помощью устройства для переливания крови. В результате выливания крови на чашку Петри обнаружено, что при этом удалось вылить из пакета практически всю кровь, которая сохраняла алый цвет. Причем, кровь вытекала из устройства наружу без пузырьков газа.Кровь внутри пакета сохраняла алый цвет на протяжении всего последующего периода наблюдения.

Третья серия опытов была проведена с раствором 0,85% натрия хлорида, 0,10% натрия гидрокарбоната и 0,10% перекиси водорода. Показано, что через 5,0 ± 0,20 секунд (Р ≤ 0,05, n = 5) после его введения в пакет с кровью в ней начиналось умеренное внутритканевое образование мелких пузырьков газа. Через 47,5 ± 1,5 секунд (Р ≤ 0,05, n = 5) темно-вишневый цвет крови менялся на алый цвет. Ультразвуковое исследование крови, которое было проведено сквозь стенку пакета, показало, что в ней происходило образование пузырьков газа и уменьшение ультразвуковой эхогенности крови. Пузырьки газа имели мелкие размеры, постепенно перемещались кверху, размещались в верхнем слое крови и через несколько секунд лопались без образования пены. Через 3 минуты после инъекции раствора в кровь было произведено выливание крови из пакета через вторую инъекционную иглу с помощью устройства для переливания крови. В результате выливания крови на чашку Петри обнаружено, что при этом удалось вылить из пакета практически всю кровь, которая сохраняла алый цвет. Причем, кровь вытекала из устройства наружу без пузырьков газа. Кровь внутри пакета сохраняла алый цвет на протяжении всего последующего периода наблюдения.

Четвертая серия опытов была проведена с раствором 0,85% натрия хлорида, 0,10% натрия гидрокарбоната и 0,06% перекиси водорода. Показано, что через 8,8 ± 0,3 секунд (Р ≤ 0,05, n = 5) после введения этого раствора в кровь в ней начиналось слабое внутритканевое образование очень мелких и редких пузырьков газа, под влиянием которого через 56 ± 2,0 секунд (Р ≤ 0,05, n = 5) кровь изменяла свой цвет с темно-вишневого на алый. Ультразвуковое исследование крови, которое было проведено сквозь стенку пакета, показало, что в ней происходило слабое образование пузырьков газа и незначительное уменьшение ультразвуковой эхогенности крови. При этом пена не образовывалась. В крови появлялись лишь единичные и мелкие пузырьки газа, которые очень медленно всплывали вверх и через несколько секунд лопались над кровью. Показано, что кровь сохраняла алый цвет на протяжении всего последующего периода наблюдения.

Пятая серия опытов была проведена с раствором 0,85% натрия хлорида, 0,10% натрия гидрокарбоната и 0,05% перекиси водорода.Показано, что через 9,7 ± 0,4 секунд (Р ≤ 0,05, n = 5) после введения этого раствора в кровь в ней начиналось слабое и очень плохо видимое внутритканевое образование очень мелких пузырьков газа, под влиянием которого через 61 ± 2,2 секунд (Р ≤ 0,05, n = 5) кровь изменяла свой цвет с темно-вишневого на алый. Ультразвуковое исследование крови, которое было проведено сквозь стенку пакета, показало, что в ней происходило слабое образование пузырьков газа и незначительное уменьшение ультразвуковой эхогенности крови. При этом пена не образовывалась. В крови появлялись лишь единичные и мелкие пузырьки газа, которые очень медленно всплывали вверх и через несколько секунд лопались над кровью. Показано, что кровь сохраняла алый цвет на протяжении всего последующего периода наблюдения.

Шестая серия опытов была проведена с раствором 0,85% натрия хлорида, 0,10% натрия гидрокарбоната и 0,04% перекиси водорода.Показано, чтопосле введения в кровь этотраствор медленно всплывалвверх без образования пузырьков газа в крови.Затем раствор размещался надкровью. При этом цвет основной массы крови оставался темно-вишневым,но через 15 минутверхний слой крови толщиной около 1,5 см приобрел алый цвет. В последующие 60 минут наблюдения состояние взаимодействующих масс изменилось незначительно.

Следовательно, раствор 0,85% натрия хлорида, 0,1% натрия гидрокарбоната и0,05 – 0,29% перекиси водородаможетвволдиться в плазму венозной крови с целью насыщения ее эритроцитов кислородом и превращения венозной крови в артериальную кровь без введения в нее газа кислорода. Данное средство получило название «Гипероксигенированное средство М.Г.Сойхер для насыщения венозной крови кислородом» [18].

Параллельно с этим была изучена биологическая активность раствора перекиси водорода в опытах с аквариумными рыбками при их острой потенциально смертельной гипоксии. Полученные нами результаты показали, что в норме в начале гипоксии рыбкипринимают неподвижное состояние, которое при температуре воды +15 и +25°Сдлится у рыбок породы гуппи соответственно 56,5 ± 2,1и 24,3 ± 1,4 минут (Р ≤ 0,05, n = 25). После этого у рыбок появляются судорожные движения туловищем, жаберными дугами, плавниками, хвостом, широко открывается рот, и рыбки начинают интенсивно пропускать воду через рот и жабры. При температуре воды +15 и +25°С высокая двигательная активность рыб породы гуппи длится соответственно 98,5 ± 1,1 и 44,5 ± 0,6 секунд(Р ≤ 0,05, n = 25). После этого рыбки становятся неподвижными, опускаются на дно емкости, переворачиваются животом вверх, а затем всплывают вверх. В состоянии вверх животом и с редкими дыхательными движениями рта и жаберных дуг рыбы находятся еще около 1 минуты и только затем погибают.

Следовательно, раствор перекиси водорода вполне пригоден для инъекций в воду с рыбками с целью обеспечения их кислородом без растворения в воде газа кислорода.

Таким образом, предложен раствор перекиси водорода для инъекций, который способен заменять собой газообразный кислород для клеток крови человека и рыб.

Источник

Новый механизм нарушения микроциркуляции под действием пероксида водорода

Пероксид водорода, образующийся в ходе многих сердечно-сосудистых заболеваний, приводит к нарушению микроциркуляции за счет стимуляции продукции оксида азота и образования пероксинитрита

Многие заболевания сердечно-сосудистой системы сопровождаются увеличением продукции пероксида водорода в стенках сосудов. Известно, что это приводит к увеличению проницаемости сосудов и апоптозу клеток эндотелия, что вызывает нарушение микроциркуляции и ускоряет развитие болезни. Тем не менее, механизмы патологического действия пероксида водорода на микрососуды практически не изучены, хотя их знание позволило бы разработать новые виды ангиопротекторных препаратов.
В своем новом исследовании группа американских ученых под руководством X. Zhou открыла один из возможных механизмов действия H2O2 на сосуды. В своей работе они использовали венулы брыжейки крыс, подвергавшиеся действию патологических концентраций пероксида водорода (10 мкМ) в присутствии различных блокаторов и красителей, позволяющих измерить концентрацию того или иного вещества в стенке сосуда.
Оказалось, что пероксид водорода стимулирует избыточную продукцию оксида азота, а также образование супероксид-аниона, которые реагируют между собой, образовывая пероксинитрит (ONOO-). Именно пероксинитрит вызывает перекисное окисление мембранных липидов, а также приводит к активации каскада каспаз, запускающих апоптоз (программируемую клеточную смерть) эндотелиоцитов, в результате чего происходит увеличение проницаемости стенок сосуда и нарушение микроциркуляции. Процесс, запускаемый Н2О2, быстро развивается, потому что пероксинитрит также увеличивает продукцию оксида азота, запуская порочный круг: чем больше образуется разрушительного пероксинитрита, тем сильнее ускоряется его синтез.
Интересно, что продукция оксида азота необходима для нормальной работы сосудов, однако в присутствии перекиси NO становится одним из факторов, опосредующих нарушение микроциркуляции и стимулирующих развитие заболевания. Возможно, в дальнейшем данные, полученные группой X. Zhou, помогут разработать лекарства, способные замедлить или остановить разрушение микрососудов при сердечно-сосудистых заболеваниях.

Еженедельный дайджест «Лечащего врача»: главные новости медицины в одной рассылке

Подписывайтесь на нашу email рассылку и оставайтесь в курсе самых важных медицинских событий

Cпасибо, ваши данные приняты. Не забудьте подтвердить подписку, в письме, которое вы получите на почту.

Подписывайтесь на наши сообщества в Facebook и Вконтакте

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *