пуш пул что это такое
Push и pull процессы
Любая фотопленка имеет несколько параметров. Тип – 35 мм, 120 тип или 110 тип; вид – цветная или черно-белая, количество кадров и светочувствительность. Если на первые три параметра вы влиять не можете, то ISO пленки – это качество, которое можно корректировать!
Вы наверняка слышали такие выражения «пушить пленку» и «пуллить пленку». На английском это звучит как «push film» и «pull film». Если совсем просто, то это означает следующее. Pull – понижение чувствительности пленки, push – повышение светочувствительности пленки.
Бывают при съёмке такие ситуации, когда выбранная вами изначально светочувствительность пленки не совсем подходит для сцены. Например, у вас пленка ISO 400, а снимать приходится не просто в условиях недостаточной освещенности, а очень низкой, с малым количеством света. Можно увеличить выдержку, но не всегда это возможно сделать с рук, да и штатив с собой мало кто носит; а раскрытая на полную диафрагма не подходит для ситуации или этого недостаточно. Что делать в таком случае? Можно отснять пленку так, будто она имеет большее ISO: 800, например. И далее проявить ее дома или в лаборатории как фотопленку светочувствительностью 800. Вот этот процесс и называется Push.
Или противоположная история. У вас пленка ISO 100, а нужно 50, потому что солнце чересчур яркое, например. Тогда вы снимаете пленку так, будто она имеет светочувствительность 50 и далее обрабатываете ее, имея в виду это же значение. Такой процесс называется Pull.
Еще один важный момент: если вы решили снимать пленку не по номиналу, то так нужно отснять ВСЮ катушку. В противном случае отдельные кадры после проявки получатся у вас нормальными, другие недоэкспонированными или переэкспонированными.
Зачем вообще нужен push/pull?
Вот несколько причин.
1. Чаще всего Push нужен для съемки с недостаточной освещенностью: если другими методами верную экспозицию получить не выходит. Это касается фотографирования в пасмурную погоду, например, или при малом количестве света, когда съёмка с рук (без опоры/штатива) невозможна. Push позволяет вам использовать более короткие выдержки.
2. С помощью Push можно добиться интересных эффектов. При таком процессе усиливается контраст и зерно становится более заметным. Снимок становится светлее. При съемке на цветную пленку вы можете получить перенасыщенные цвета или вовсе их искажение.
3. Pull нужен для фотографирования в чересчур ярких условиях, так как помогает вытянуть детали в тенях и снижает контраст.
4. Pull также можно использовать для эффектов. Цвета с таким процессом становятся менее яркими или даже блеклыми, понижается общая контрастность снимка.
Как видите, пуш и пулл процессы можно использовать в разных целях – как «технических», для корректировки экспозиции при съёмке, так и творческих, однако всегда необходимо помнить о побочных эффектах, которые описаны выше.
Что еще нужно знать?
Теоретически эти процессы возможны на любых камерах. Но лучший результат выходит, конечно, если вы пользуетесь фотоаппаратами с хорошей линзой и точной экспонометрией. Это также камеры, где вручную вы можете установить ISO пленки перед съемкой. На мыльнице процессы возможны, если вы изначально поменяете ISO на катушке, так как практически любой компакт считывает DX-код, нанесенный на ролик пленки, и экспонирует соответственно номиналу.
Пленки разные и далеко не все поддаются push и pull, особенно когда речь идет о переэкспонировании или недоэкспонировании на 2 стопа и более. Важно понимать, что лучшие результаты получаются на черно-белых пленках, так как они лучше поддаются обработке и обычно имеют большую широту ISO (динамический диапазон). Цвет при обработке может сильно «поплыть». Также: пленки профессионального сегмента терпимее переносят push/pull, так как изначально делаются лучшего качества по сравнению с любительскими. Собственно, потому они и стоят дороже.
Чаще всего Push/Pull подвергаются именно черно-белые пленки, причем намеренно: для получения высокого контраста и заметного зерна. Цвет тоже обрабатывают по этим процессам. Слайд пушат или пулят реже всего, так как этот фотоматериал довольно капризный и почти не прощает ошибок экспозиции. Максимальный пуш для слайда – 1-1.5 стопа. Важное уточнение о просроченных пленках: если вы снимаете ролик ISO 100 как 50, то pull делать не нужно, так как вы изначально предполагаете, что светочувствительность пленки снизилась до значения 50. Сдавая такую пленку в лабораторию, вы отдаете ее просто на обычную проявку.
Лучшие черно-белые пленки для этих процессов – Kodak TRI-X, Ilford HP5 Plus, Ilford PAN 3200. Цветные – серия Portra от Кодак (с ISO 400 подойдет больше всего). Прежде чем пушить или пуллить какую-то пленку, советуем заглянуть в поисковик и посмотреть результаты, чтобы хотя бы примерно представлять, что может получиться. Все пленки разные, есть и те, которые лучше так не обрабатывать совсем. Впрочем, ничто не мешает вам ставить эксперименты. Особенно, если вы изначально хотите получить какой-то необычный результат.
Своими снимками делитесь с нами в Instagram. Много полезной информации вы также найдете на нашем Youtube канале.
Автор текста и фотографий: Мария Герасимова
На чьей стороне вы: Push и Pull в Desired State Configuration
Мы уже рассказали, как описывать конфигурацию в Desired State Configuration (DSC) и разобрали встроенный агент Local Configuration Manager (LCM) для применения конфигурации на сервере. В первой части статьи пошагово прошлись по основным особенностям инструмента вместе с Евгением Парфеновым из DataLine.
Здесь же погрузимся в настройку и особенности работы в режимах Push и Pull.
О чём расскажем:
Различия режимов Push и Pull
В режиме Push мы вручную или скриптом запускаем процесс применения изменений на сервере (локально или удаленно). Local Configuration Manager (LCM) применяет конфигурацию интерактивно.
В режиме Pull сам агент LCM на сервере по расписанию сравнивает свою конфигурацию с конфигурацией, опубликованной в общем хранилище конфигураций. Если имеются изменения, то конфигурация копируется локально и применяется.
Плюсы и минусы обоих режимов работы вполне очевидны.
Установка ресурсов также немного отличается для разных режимов. Как мы помним, для использования ресурса нужно установить его локально и на сервер.
В случае использования режима Push администратор должен предварительно установить все необходимые ресурсы на управляемый сервер и на ПК, откуда конфигурация будет подана.
В режиме Pull — агент DSC на управляемом сервере может самостоятельно установить все необходимые ресурсы с Pull-сервера, задача администратора – разместить их на Pull-сервере. Однако держим в уме, что невозможно спрогнозировать применение конфигурации в режиме Pull, так как GPO не является гарантированной доставкой настроек.
Push-режим в деталях
Верхнеуровнево процесс написания и применения конфигураций DSC можно представить в следующем виде:
На первой стадии (Authoring) мы описываем конфигурацию используя любой удобный нам IDE (Notepad, PowerShell ISE, Visual Studio Code и другие). По завершении мы компилируем mof-файлы конфигурации (процесс компилляции описан в нашей предыдущей статье).
На второй стадии (Staging/Compilation) мы запускаем применение конфигурации из скомпилированного mof-файла с помощью командлета Start-DSCConfiguration. В процессе сервер управления передаёт mof-файл LCM сервера, который должен применить конфигурацию.
В данном случае лучше использовать ключ -Verbose для полного контроля процесса конфигурации:
Видно, что движок проверил наличие переменной, не нашёл её и создал новую, согласно указанной конфигурации:
Для управления разными файлами конфигурации имеется командлет Remove-DSCConfigurationDocument, который позволяет удалять конкретные документы, если это по какой-то причине необходимо сделать. Впрочем, ничто не мешает нам их удалить вручную.
Pull-режим в деталях
Pull-режим сложнее в развёртывании и настройке, но он сильно упрощает процесс управления серверами, которые подключены к нему.
Общая схема будет выглядеть примерно так:
Pull-режим требует развёртывания Pull-сервера. Фактически он является обычным веб-сервером, который может отдавать клиентам mof-файлы и ресурсы, которые могут потребоваться при применении конфигураций из mof-файлов. Последнее сильно упрощает процесс управления и конфигурации серверов, так как задача по доставке необходимых ресурсов ложится на клиента. Pull-сервер при этом выступает в качестве хранилища\репозитория ресурсов.
Pull-сервер умеет предоставлять доступ к ресурсам и файлам конфигурации через два протокола:
Воркфлоу дальнейшей работы с pull-сервером следующий:
Настройка клиентов (LCM) на работу с pull-сервером
Загрузка на Pull-сервер файлов ресурсов
После применения новых настроек на LCM, которые научат его использовать Pull-сервер, можно загружать на сервер файлы ресурсов. Ресурсы загружаются на сервер в виде zip-файлов (папка с ресурсом упаковывается в zip). Правило именования такого файла:
Размещение на Pull-сервере файлов конфигураций клиентов
Здесь важно отметить, что мы можем использовать два режима работы клиентов в данном случае (на самом деле два с половиной): клиент с сервера будет получать конфигурацию, используя ConfigurationID, или клиент будет использовать имя конфигурации – ConfigurationName. Если необходимо применить несколько конфигураций, то все их можно указать в ConfigurationName, но при этом придётся LCM настроить на работу с частичными конфигурациями (partial configuration).
При использовании ConfigurationID нужно подчеркнуть, что mof-файл конфигурации, который будет применён на клиента, будет содержать GUID (он содержится в ConfigurationID). В случае использования ConfigurationName – mof-файл будет содержать имя конфигурации, которое мы укажем в ConfigurationName. В обоих случаях помимо mof-файла там же будет размещаться файл контрольной суммы конфигурации:
Электроника для всех
Блог о электронике
Основы на пальцах. Часть 4
Но диоды, резисторы, транзисторы и конденсаторы это так, лишь обвязка. Особо на них не развернешься (нет, маньяки, конечно могут, но габариты устройств там будут феерические). Самое вкусное нас поджидает в микросхемах 🙂
Делятся они на цифровые и аналоговые. Для начала кратко пробегусь по цифровым микросхемам.
Миром правит цифра!
Во избежания путаницы смыслов, в терминологии ключей и транзисторов принято следующее соглашение. Ключ считается открытым или закрытым для протекания тока, как кран на трубе. С точки зрения же механического исполнения он может быть замкнут или разомкнут. Так что открыт = замкнут, закрыт = разомкнут. И не следует путать с англоязычной нотацией, где Open = открыт если речь идет о транзисторе или электронном ключе и Open = разомкнут если речь идет о механическом рубильнике. Там Open-Close следует рассматривать в общем контексте текущего случая. Велик и могуч русский язык! =) |
О микросхемах дискретной логики И, ИЛИ, НЕ я рассказывать не буду, каждую описать, так это справочник не на одну сотню страниц будет. Да и постепенно они уходят в прошлое, вытесняемые контроллерами и программируемыми матрицами. Скажу лишь главное – работают они по жесткой таблице истинности, которую можно найти в соответствующем datasheet.
Испльзование операционных усилителей |
Если от операционного усилителя надо получить усиление, то нужно как то обуздать его бешеный коэффициент. Для этого ему добавляют отрицательную обратную связь. Т.е. берут и с выхода подают сигнал на отрицательный вход, подмешивая его к основному входному сигналу. В итоге, выходной сигнал вычитается из входного. А коэффициент усиления становится равным отношению резисторов на входе и выходе (смотри схему).
Но это далеко не все фишки которые умеет делать операционный усилитель. Если в обратную связь сунуть конденсатор, то получим интегратор, выдающий на выходе интеграл от функции входного сигнала. А если скомбинировать конденсатор с резистором, да индуктивность на вход… В общем, тут можно книгу писать, а занимается этими занятными процессами отдельная наука – автоматическое управление. Кстати, именно на операционных усилителях сделаны аналоговые компьютеры, считающие дифференциальные уравнения с такой скоростью, что все цифровые компы нервно курят в уголке.
Спасибо. Вы потрясающие! Всего за месяц мы собрали нужную сумму в 500000 на хоккейную коробку для детского дома Аистенок. Из которых 125000+ было от вас, читателей EasyElectronics. Были даже переводы на 25000+ и просто поток платежей на 251 рубль. Это невероятно круто. Сейчас идет заключение договора и подготовка к строительству!
А я встрял на три года, как минимум, ежемесячной пахоты над статьями :)))))))))))) Спасибо вам за такой мощный пинок.
Пушпульный преобразователь. Еще один взгляд
В статье, представляющей собой сокращенный перевод [1], рассмотрен двухтактный пушпульный преобразователь, работающий в режиме управления по напряжению. Даны рекомендации, позволяющие обеспечить устойчивость работы преобразователя в этом режиме. Названы и обоснованы области применения данного решения, и показаны преимущества по сравнению с преобразователями с иной топологией.
Двухтактная схема в пушпульных, полумостовых и мостовых преобразователях позволяет получить более высокую эффективность преобразования энергии и большую плотность мощности по сравнению с однотактными схемами, такими как обратноходовые и прямоходовые преобразователи. Поэтому двухтактная топология популярна во многих приложениях, особенно в телекоммуникациях и автоэлектронике.
Разработчики, хорошо знакомые с двухтаткными схемами, знают, что режим управления по току обычно применяется для пушпульных и мостовых схем, тогда как режим управления по напряжению, как правило, используют в полумостовых схемах. Двухтактный преобразователь склонен к насыщению сердечника трансформатора. Любая асимметрия вольтсекундной характеристики между двумя фазами работы приводит к асимметрии магнитного потока, что вызывает возрастание постоянного тока.
В полумостовой схеме один вывод первичной обмотки трансформатора соединен с центральной точкой конденсаторного делителя входного напряжения, и несимметричность вольтсекундной характеристики приводит к смещению центральной точки конденсаторного делителя либо к земле, либо к входному напряжению. Режим управления по току компенсирует эту тенденцию, и потенциал центральной точки возвращается к исходному уровню.
Если длительность одной фазы дольше другой в режиме управления по напряжению в полумостовой схеме, то приложенное к трансформатору напряжение уменьшается, т.к. конденсатор разряжается больше, и напряжение на нем падает. Таким образом происходит регулирование вольтсекундной характеристики. Поэтому смещение потенциала центральной точки конденсаторного делителя играет роль отрицательной обратной связи и предотвращает насыщение трансформатора. Таким же образом необходимо ввести и отрицательную обратную связь в двухтактном преобразователе при работе в режиме управления по напряжению.
На практике подобные случаи почти не встречаются, т.к. помимо одинакового времени включения в фазах необходимо еще и совпадение сопротивлений DCR и RDS(ON) в обеих частях схемы. Также из-за разности в динамических характеристиках ключей (время включения/выключения) неодинаковой оказывается и длительность открытого состояния ключа в каждой фазе. Следует учесть и джиттер генератора сигналов. Все перечисленное приводит к асимметрии фаз и смещению цикла перемагничивания от исходной точки (см. рис. 3). Поэтому токи намагничивания в полуобмотках различны. Если асимметрия фаз не компенсируется, то кривая перемагничивания смещается в сторону насыщения. При этом индуктивность обмотки уменьшается, и ток намагничивания резко возрастает, что приводит к отказу преобразователя.
При режиме управления по току во внутреннем (токовом) контуре управления ток первичной обмотки в каждом цикле сравнивается с сигналом ошибки, и вырабатывается управляющее воздействие, изменяющее вольтсекундную характеристику таким образом, чтобы уравновесить пиковый ток в обеих фазах. Как показано на рисунке 1, ток первичной обмотки складывается из тока намагничивания и тока нагрузки. Поэтому из-за быстрого изменения нагрузки возможна небольшая асимметрия фаз, но обычно она не приводит к сколько-либо существенным последствиям, т.к. величина BPEAK существенно меньше BSAT.
В режиме контроля по напряжению в каждом выходном цикле выходное напряжение сравнивается с заданным. Величина тока намагничивания не используется для выработки управляющего воздействия. Таким образом, режиму управления по напряжению не присуще балансирование рабочей характеристики и возврат частной кривой намагничивания трансформатора в исходное состояние. Следовательно, чтобы избежать насыщения сердечника, необходимо ввести отрицательную обратную связь, которая поможет сбалансировать вольтсекундную характеристику.
Естественно, возникает вопрос: если режим управления по току предотвращает насыщение сердечника трансформатора, то зачем рассматривать режим управления по напряжению для подобного типа преобразователя? И почему мы рассматриваем именно пушпульный преобразователь, а не какой-либо иной?
Ответ достаточно прост. Для ряда приложений характерен широкий диапазон изменений питающих напряжений. Например, в автомобильной электронике при холодном пуске двигателя напряжение может уменьшаться до 6 В, а в рабочем режиме увеличиваться до 15 В. Подобный провал напряжения делает бесперспективным применение мостовой или полумостовой схемы с драйверами верхних ключей. В пушпульном преобразователе оба ключа — нижние, поэтому он отлично подходит для приложений с малым входным напряжением. При малых, близких к нулю значениях токов, режим управления по току становится чувствительным к помехам. Длительность импульсов ШИМ может существенно отличаться от требуемой. Чтобы избежать этих проблем, к линейно изменяющемуся сигналу, используемому для генерации импульсов ШИМ, добавляют дополнительный линейно изменяющийся сигнал, увеличивая тем самым его амплитуду. С одной стороны, это стабилизирует работу ШИМ, но, с другой, усложняет управление и создает ряд проблем.
– При отсутствии или очень малой нагрузке величина дополнительного сигнала более зависит от напряжения, чем от тока, что может привести к неадекватной компенсации и возникновению колебаний.
– При величине заполнения более 50% дополнительный сигнал играет позитивную роль, однако при меньшей величине заполнения вновь возникают те же проблемы, приводящие к появлению колебаний.
Приведенные выше соображения показывают, что режим управления по напряжению в пушпульном преобразователе является привлекательным решением для многих приложений с пониженным входным напряжением и при большом диапазоне изменения нагрузки.
Как уже говорилось, при работе в режиме управления по напряжению в пушпульном преобразователе неизбежно возникает асимметрия фаз. Однако существуют и меры стабилизации, способные устранить этот недостаток.
Воздушный зазор в сердечнике трансформатора увеличивает удельное магнитное сопротивление. Магнитная проницаемость µ сердечника трансформатора обратно пропорциональна удельному магнитному сопротивлению. Таким образом, воздушный зазор уменьшает наклон петли гистерезиса (см. рис. 4) и отдаляет момент насыщения сердечника. Другими словами, введение воздушного зазора позволяет увеличить постоянную составляющую тока намагничивания.
Воздушный зазор — это тоже отличное средство уменьшить влияние разброса магнитных материалов при серийном производстве. Без воздушного зазора индуктивность прямо пропорциональна магнитной проницаемости ферромагнитного сердечника, свойства которого существенно зависят от температуры и характеристик материала сердечника. Последние варьируются в очень широких пределах. Введение воздушного зазора уменьшает зависимость индуктивности от магнитной проницаемости µ ферромагнитного материала и увеличивает стабильность и повторяемость характеристик трансформаторов.
Как показано на рисунке 4, воздушный зазор уменьшает индуктивность, в результате чего возрастает пиковый ток, следовательно, уменьшается эффективность преобразователя. Но в большинстве случаев этот эффект не очень значителен.
Как следует из рисунка 1, вольтсекундная характеристика при пушпульной схеме определяется следующим образом:
Полагая, что длительность одной фазы больше другой на Δt, новое значение тока можно описать выражением:
Увеличение тока приводит к возрастанию мощности, рассеиваемой в MOSFET. Сопротивление RDS(ON) MOSFET имеет положительный температурный коэффициент, и поэтому RDS(ON) также возрастет. После алгебраических преобразований получим:
Из-за возрастания падения напряжения благодаря увеличению RDS(ON) и намагничивающему току уменьшается напряжение, прикладываемое к трансформатору, что, в свою очередь, компенсирует большее время открытия силового ключа в данной фазе. Возникает эффект отрицательной обратной связи, и асимметрия вольтсекундной характеристики уменьшается в течение нескольких циклов переключения. Это приводит к устойчивой работе преобразователя — рабочий цикл перемагничивания укладывается в безопасную зону кривой намагничивания, которая имеет небольшое смещение из-за эффекта подмагничивания (имеется постоянная составляющая в токе намагничивания). На рисунке 3 показан пример, когда рабочий цикл смещен, но находится в пределах безопасной зоны. Постоянная составляющая в намагничивающем токе возникает из-за неодинаковости пиковых токов. Также и добавление балластных резисторов в каждое плечо преобразователя обеспечивает отрицательную обратную связь, но в этом случае значительно возрастают потери, и уменьшается эффективность преобразователя.
В статическом режиме кривая намагничивания пушпульного преобразователя перемещается между первым и третьим квадрантами. Однако при запуске или в результате переходных процессов кривая намагничивания может изменяться от начальной точки. В этом случае при том же приращении ΔB, что и в статическом режиме, сердечник трансформатора может оказаться в зоне насыщения, что приведет к значительному возрастанию тока и выходу преобразователя из строя. Этого можно избежать, вводя мягкий старт и пошаговое ограничение предельного тока, благодаря чему при опасном возрастании тока, возможном в переходных процессах, прервется цикл, и преобразователь перезапустится. Пример схемной реализации пушпульного преобразователя приведен в [1].
Статьи
Как работает усилитель класса АВ (Push Pull) 19.02.2021 19:52
Как работает усилитель класса АВ (Push Pull)
Класс АВ — это тот тип усилителей, который до недавнего времени применялся в Hi-Fi-аппаратуре в разы чаще, чем любой другой. Сейчас над ним уже нависла угрожающая тень усилителей класса D, занимающих все большую долю рынка Hi-Fi, но пока модели класса АВ по-прежнему в большинстве и сдаваться так легко они не собираются. В классе АВ могут работать как ламповые, так и транзисторные схемы, но если говорить об абсолютном большинстве класс АВ ассоциируется скорее с эпохой транзисторного Hi-Fi.
Принцип работы
Из самого обозначения класса АВ нетрудно сделать вывод, что данный режим является гибридом класса А и класса В. Как работают усилители класса А, мы уже разобрались, а с классом В ознакомиться не успели, поэтому начнем с него. И для начала вспомним логику, которой руководствовался создатель усилителя класса А. Для того, чтобы получить возможность воспроизводить и положительную, и отрицательную полуволну с помощью одного активного элемента, он применил смещение средней точки (тока покоя) в середину рабочей зоны лампы.
Создатели усилителей класса В рассуждали по-другому: «Если одна лампа или один транзистор с нулевым смещением способен воспроизвести только одну полуволну сигнала, почему бы не добавить в схему еще один активный элемент, разместив его зеркально, чтобы воспроизводить другую полуволну?».
Это вполне логично, ведь при таком раскладе оба транзистора работают с нулевым смещением. Пока на входе усилителя присутствует положительная полуволна — работает один транзистор, а когда приходит время воспроизводить отрицательную полуволну, первый транзистор полностью закрывается и вместо него в работу включается второй. В английском варианте этот принцип действия получил название push-pull или, говоря по-русски, «тяни-толкай», что в общем-то очень хорошо описывает происходящее.
Если сравнивать класс В с классом А, наиболее очевидным преимуществом является то, что в классе В на каждую волну приходится полный рабочий диапазон транзистора (или лампы), в то время как в классе А обе полуволны воспроизводятся одним активным элементом. Это значит, что усилитель класса В будет вдвое мощнее усилителя класса А, собранного на таких же транзисторах.
Второй, чуть менее очевидный, но очень важный плюс класса В — нулевые токи смещения. Когда сигнал на входе равен нулю, ток, протекающий через транзисторы, тоже равен нулю, а это значит, что напрасного расхода энергии не происходит, и энергоэффективность схемы получается в разы выше, чем в классе А.
Однако из этого же факта вытекает и главный недостаток усилителя класса В. Момент включения транзистора в работу после полностью закрытого состояния сопровождается небольшой задержкой, поэтому при прохождении звуковым сигналом нулевой точки, когда один транзистор уже закрылся, второй транзистор не успевает мгновенно подхватить эстафету, и в этой самой переходной точке возникают небольшие временные задержки.
На практике это выражается в особенной нелюбви усилителя к тихой музыке, а также в плохой передаче микродинамики. И хотя история знает успешные реализации класса В, например — легендарный Quad 405, проблемы данного режима работы никуда не делись. Тот же 405-й не только радовал энергичным и мускулистым звучанием, но также имел явную склонность рисовать звуковую картину крупными мазками, масштабно, не размениваясь на мелочи.
Для того, чтобы сохранить все плюсы класса В и решить проблему переходных процессов, инженеры пошли на хитрость. Они включили оба транзистора со смещением, как это делается в классе А, но величина смещения при этом была выбрана существенно меньшая: так, чтобы покрыть лишь те моменты, когда транзистор близок к закрытию, выводя тем самым переходные процессы из рабочей зоны.
Это позволило усилителю класса АВ незаметно преодолевать нулевую точку, а также дало еще один крайне полезный эффект. При малой амплитуде сигнала, укладывающейся в пределы смещения тока покоя, подобный усилитель работает в классе А и, только когда амплитуда выходит за пределы выбранной производителем величины смещения, он переходит в режим АВ.
Плюсы
Рассматривать достоинства и недостатки класса АВ имеет смысл на фоне двух исходных технологий. Класс АВ однозначно и существенно выигрывает у класса А по энергоэффективности. Его реальный КПД достигает 70–80%, если конечно производитель не сильно увлекся поднятием тока покоя. С точки зрения звучания класс АВ превосходит класс А в те моменты, когда сигнал достигает высокой амплитуды или требуется высокая мощность. В то же время на малых уровнях громкости класс АВ обычному классу А не уступает, по крайней мере в теории. В сравнении с классом В, класс АВ куда лучше ведет себя на малых громкостях и способен отрабатывать самые тихие и деликатные моменты в музыке, но при этом сохраняет практически ту же мощь и силу на больших динамических всплесках.
Имея большую мощность и лучшую энергоэффективность, усилители класса АВ куда менее капризны при выборе акустики. Они не нуждаются в высокой чувствительности и легче уживаются со сложными кроссоверами, используемыми в многополосных колонках. Вполне справедливо будет заявить, что подавляющее большинство пассивных акустических систем выпускаемых сегодня на рынок рассчитаны на работу со среднестатистическим транзисторным усилителем класса АВ.
Минусы
Объективные минусы у класса АВ можно разглядеть только на фоне еще более совершенных с технической точки зрения классов G, H или D, о которых мы расскажем чуть позже. В список претензий можно отнести разве что субъективные отзывы от ценителей класса А, которые, в целом, сводятся к тому, что класс АВ звучит не столь чисто, детально и изысканно. Чтобы оценить обоснованность данных претензий, рассмотрим схемотехнику усилителей класса АВ более детально, с точки зрения качества звучания.
Особенности
Одной из практических проблем усилителей класса В и АВ является подбор пар транзисторов, работающих в одном канале усиления. Располагаясь в схеме зеркально, два транзистора должны быть полностью идентичны друг другу. В противном случае, сигналы положительной и отрицательной полуволн будут воспроизводиться не симметрично, и это существенно повысит общий уровень искажений.
В реальной жизни абсолютная идентичность — понятие абстрактное, скорее имеет смысл рассуждать о степени похожести или, говоря техническим языком, о пределах допустимых отклонений транзисторов от заданных характеристик. Чем более похожи два транзистора друг на друга, тем меньше уровень искажений, и тем больше их совместная работа приближается к тому, что мы имеем в классе А, когда обе полуволны воспроизводит один транзистор.
Понимая, что даже при самом строгом отборе по параметрам отличия между двумя транзисторами в паре все же будут иметь место (пусть и в предельно малых значениях), мы вынуждены признать, что при прочих равных условиях один такой же транзистор работающий в классе А будет звучать чуть чище и чуть лучше, чем пара в классе АВ.
Совсем иная ситуация вырисовывается, когда речь заходит о работе на большой амплитуде сигнала и на нагрузке требующей высокой мощности. Имея высокий КПД класс АВ нуждается в менее мощном и громоздком блоке питания, нежели усилитель класса А, и тут уже поклонники однотактников вынуждены признать абсолютное и безоговорочное превосходство класса АВ.
Более того, разработчики имеют возможность гораздо свободнее экспериментировать с блоками питания, управляя характером и динамикой звучания путем подбора рабочих характеристик трансформатора и конденсаторов. Например, можно установить трансформатор с многократным запасом мощности, чтобы на пиках сигнала он не выходил из оптимального режима работы, или использовать улучшенные конденсаторы, способные мгновенно отдавать высокий ток.
Еще одна тонкость: работая в классе А, транзисторы выделяют большое количество тепла, что может негативно сказываться на качестве их работы, особенно при увеличении нагрузки. В классе АВ транзисторы греются в меньшей степени, вследствие чего они быстро приходят в рабочий режим и менее подвержены риску перегрева, снижающего качество звучания при работе усилителя на высокой громкости.
Практика
Защищать честь усилителей класса АВ в сравнительном прослушивании было уготовано мощному двухблочному усилителю Atoll серии Signature, состоящему из усилителя мощности AM200 и предварительного усилителя PR300. Интересующий нас усилитель мощности выстроен в полном соответствии с изложенными выше теоретическими выкладками.
Реализуя потенциал, заложенный в схемотехнике класса АВ, разработчики обеспечили по 120 Вт выходной мощности на канал, чего достаточно для большинства акустических систем за исключением самых низкочувствительных и просто монструозных моделей. Говоря об особенностях своего усилителя, производитель акцентирует внимание на применении подобранных пар транзисторов с последующей подстройкой схемы вручную для минимизации общего уровня искажений.
С целью лучшего разделения каналов и исключения перекрестных помех усилитель выстроен по схеме полного двойного моно, поэтому каждый канал усиления получил собственный блок питания. Суммарная мощность блока питания составляет 670 ВА, что покрывает потребности усилителя мощностью 120 Вт с большим запасом. Солидную дополнительную подпитку на пиках сигнала обеспечат конденсаторы емкостью 62 000 мкФ.
Внушительная мощность и отличная энергооснащенность усилителя дали в звучании вполне ожидаемое ощущение легкости и непринужденности при работе с любой акустикой и практически на любых уровнях громкости. Если выкрутить ручку громкости посильнее, можно услышать небольшую компрессию, а бас словно отодвигался на задний план, но это были очевидные признаки того, что НЧ-динамики приблизились к пределу своих возможностей, в то время как усилитель только начал разогреваться и был очень далек от состояния перегрузки.
В то же время на малых и средних уровнях громкости Atoll AM200 Signature показывал себя наилучшим образом. Середина была выразительна, детальность превосходна, а сцена — четко очерчена, с хорошо ощутимой глубиной и шириной. При прямом сравнении с усилителями класса А последние давали чуть более свободную и безграничную сцену и чуть тоньше отрабатывали мелкие детали в тихой камерной музыке.
Характер, свойственный классу АВ, наиболее ярко проявлялся у Atoll AM200 Signature на динамичной рок-музыке. Он выдавал очень собранный, быстрый и четкий бас, хорошо справляясь с резкими перепадами громкости и крупными штрихами. На джазе и классической музыке, требующих сочетать динамичность и мощь со способностью воспроизводить тонкие оттенки и нюансы, усилитель вел себя чуть менее уверенно. Казалось, что он слегка упрощает звучание, укрупняя музыкальные образы и уводя внимание от тонких оттенков к основной мелодической линии.
Однако все это можно заметить лишь в прямом сравнении с гораздо более дорогими представителями других классов. По общему впечатлению Atoll AM200 Signature был скорее всеяден и универсален. Являясь примером грамотной реализации класса АВ, когда разработчики приложили массу усилий чтобы минимизировать слабые места и максимально раскрыть потенциал данной схемотехники, он вполне конкурентен на фоне лучших представителей других классов.
Выводы
Высокая мощность, высокий КПД с умеренным тепловыделением, способность справляться со сложной нагрузкой и хорошая динамика — вот что такое усилитель класса АВ. Это делает его, в первую очередь, идеальным решением для массового производства усилителей, что подтверждает сама история развития индустрии Hi-Fi.
Однако крайне ошибочно руководствоваться стереотипным мнением о том, что массовый универсальный продукт и продукт элитный должны быть непременно вылеплены из разного теста. При должном внимании к деталям и глубоком понимании принципов работы данная схемотехника может быть реализована на самом высоком уровне качества. Так что сегодня High End-усилитель, работающий в классе AB — такая же обыденность, как и хайэндный усилитель, работающий в любой другой схемотехнике.