Dell controlled turbo что это
Dell R640 server
This page contains information out Dell PowerEdge R640 could servers which we have deployed in our Niflheim cluster.
Documentation and software
Dell Support provides R640 information:
Dell OpenManage
Download the OpenManage software ISO image from the R640_downloads page in the Systems Management download category.
Download the Dell EMC OpenManage Deployment Toolkit (Linux) DTK ISO file and mount it on /mnt.
Dell EMC System Update (DSU)
Dell EMC System Update (DSU) is a script optimized update deployment tool for applying Dell Update Packages (DUP) to Dell EMC PowerEdge servers. See the DSU manuals.
The DSU may also be configured as a Yum repository, see the DSU page. The commands are:
Alternatively, download the Systems-Management_Application_* file and execute it.
This will create the Yum repository file:
Install RPM packages including iDRAC tools:
Using DSU to preview Dell upgrades:
To apply Dell upgrades:
Systems Management Managed Node Core and CLI
Install the package:
racadm command
Make a soft link for the racadm command:
Get Health LED status:
Get system and version information:
Clone system configuration with racadm
The racadm command can be used to get and set the system configuration using:
To use the config.xml on another server and reboot automatically by default:
To postpone the reboot:
Add the --preview to just check the operation.
You can also reconfigure just a single setting component with the -c flag, for example:
The racadm set operation launches an iDRAC job which must complete before you reboot the server. See the job status by:
Setting system parameters
To enable IPMI over LAN:
The server needs to be rebooted in order for the new setting to take effect.
Get a list of settings:
To read some current values:
To enable WakeOnLan first check the installed NICs (network adapters), for example:
View the NIC settings:
Then you must create a job for this NIC:
A new setting will only take effect after a system reboot.
PERC H330 RAID controller
The R640 comes with a PERC H330 RAID controller.
By default the installed disks are unallocated, and you have to configure their usage.
Press F2 during start-up to enter the setup menus. Go to the Device Settings menu.
Configure the H330 via the menu item Device Settings and select the RAID controller item:
Press Finish to save all settings.
raidcfg tool
The OpenManage tool raidcfg can be installed from the above mentioned Dell EMC OpenManage Deployment Toolkit (Linux) folder /mnt/RPMs/rhel7/x86_64/:
To list installed RAID controllers:
perccli tool
The perccli tool for Linux is downloaded from the PowerEdge server’s SAS RAID downloads
Install the RPM (the version may differ):
Disk status
This command shows all disks for controller 1:
This command shows the RAID rebuild status for controller 1:
Booting and BIOS configuration
Press F2 during start-up to enter the BIOS and firmware setup menus. Go to the BIOS Settings menu.
Minimal configuration of a new server or motherboard
At our site the following minimal settings are required for a new server or a new motherboard. Remaining settings will be configured by racadm.
The Dell iDRAC9 (BMC) setup is accessed via the System Setup menu item iDRAC Settings:
Go to the System Setup menu item Device Settings and select the Integrated NIC items:
Boot Sequence menu:
Boot settings menu
UEFI boot settings
If UEFI boot mode is selected, the following must be enabled before installing the OS for the first time:
Memory settings menu
Adaptive Double DRAM Device Correction (ADDDC) that is available when a system is configured with memory that has x4 DRAM organization (32GB, 64GB DIMMs). ADDDC is not available when a system has x8 based DIMMs (8GB, 16GB) and is immaterial in those configurations. For HPC workloads, it is recommended that ADDDC be set to disabled when available as a tunable option. See BIOS characterization for HPC with Intel Cascade Lake processors.
Processor settings menu
The Sub NUMA Cluster (SNC, replaces the older Cluster-on-Die (COD) implementation) has been shown to improve performance, see BIOS characterization for HPC with Intel Cascade Lake processors. This will cause each processor socket to have two NUMA domains for the two memory controllers, so a dual-socket server will have 4 NUMA domains.
Display the NUMA domains by:
System Profile Settings menu
System Security menu
Miscellaneous Settings menu
PXE boot setup
Go to the System Setup menu item Device Settings and select the Integrated NIC items:
Press Finish to save all settings.
iDRAC (BMC) setup
The Dell iDRAC9 (BMC) setup is accessed via the System Setup menu item iDRAC Settings:
In the System Summary page read the NIC iDRAC MAC Address from this page for configuring the DHCP server.
In the Network page set the Enable IPMI over LAN to Enabled.
In the User Configuration page set the User 2 (root) Administrator user name and change the password. The Dell iDRAC default password for root is calvin and you will be asked to change this at the first login.
IMPORTANT: The iDRAC9 keyboard layout is US English! Do not use characters that differ from the US layout!
Optional: In the Thermal page set Thermal: Maximum Performance.
Press Finish to save all settings.
View Lifecycle errors
The Lifecyclle log can be read by:
To select specific events, see details with:
For example, select events of type Warning since a specific timestamp and show the last 5 events:
SMTP alerts from iDRAC
In the iDRAC web GUI go to iDRAC Settings->Connectivity->Common Settings and configure the DNS domain name and hostname.
Then configure alerts in Configuration->System Settings->Alert Configuration->Alerts. Then go to the SMTP (Email) Configuration sub-menu and set up SMTP alerts.
TSR reports from iDRAC
TSR system reports for Dell Support cases are normally generated using the iDRAC web interface.
It is also possible to generate TSR reports using the racadm techsupreport subcommand:
Check the progress of the report generation with:
After some minutes export the completed TSR report to a local ZIP file:
iDRAC server power management
The server power can be managed from the iDRAC web interface under the Dashbord pull-down menu Graceful shutdown.
The iDRAC9 CLI can also be used to manage server power. Use SSH to login to the CLI, and the Help menu states this:
To hard power cycle the server:
iDRAC or LifeCycle Controller errors
If the iDRAC controller seems frozen, or if the LifeCycle Controller (LCC) has errors, one should try to perform a deep power drain.
We have seen the R640 LCC going into a Recovery Mode preventing the setting of BIOS parameters using racadm, and an error message on the console:
This error was resolved by a deep power drain of the server.
Deep power drain procedure
iDRAC Easy Restore
See the iDRAC9 User’s Guide:
After you replace the motherboard on your server, Easy Restore allows you to automatically restore the following data:
Easy Restore uses the Easy Restore flash memory to back up the data. When you replace the motherboard and power on the system, the BIOS queries the iDRAC and prompts you to restore the backed-up data. The first BIOS screen prompts you to restore the Service Tag, licenses, and UEFI diagnostic application. The second BIOS screen prompts you to restore system configuration settings. If you choose not to restore data on the first BIOS screen and if you do not set the Service Tag by another method, the first BIOS screen is displayed again. The second BIOS screen is displayed only once.
Resetting the iDRAC
The Integrated Dell Remote Access Controller (iDRAC) is responsible for system profile settings and out-of-band management. Sometimes, iDRAC may become unresponsive due to various reasons. Symptoms of unresponsive iDRAC include the following:
The iDRAC can be reset using the System Identification button:
IT-wiki: Dell_R640 (последним исправлял пользователь OleHolmNielsen 2021-12-14 12:42:16)
ОчиститьКэш (сохранено 2021-12-14 12:42:17)
Как работает автоматическое повышение частот у процессоров Intel и AMD
Содержание
Содержание
За производительность компьютера отвечают не только ядра и потоки. В современных чипах производители управляют частотой и вычислительной мощностью при помощи технологий Intel Turbo Boost и AMD Precision Boost. Но у каждой из них есть свои нюансы и особенности. Чтобы разобраться, как они работают, нужно понять, что такое частота, почему она тактовая, и как это влияет на мощность процессора.
Почему частота «тактовая»?
Если говорить просто, частота — это повторяющиеся действия. Частота указывает только быстроту объекта, но не его производительность. Например, двигатель внутреннего сгорания вращает маховик со скоростью 2000 оборотов в минуту. При этом он может выдавать разную полезную мощность.
С помощью тактов обозначают производительность — количество выполненной полезной работы за одно движение. Чтобы разобраться в значении тактов и частоты, можно обратиться к математике. Например, перед нами находятся два колеса, у одного из них радиус 10 дюймов, у другого — 20 дюймов, поэтому, несмотря на одинаковую частоту вращения, колеса будут иметь разную скорость. В этом случае обороты можно принять за такты, а километраж, который колесо проезжает за один оборот — тактовой частотой или производительностью. Отсюда следует, что просто частота — это не качественное, а количественное обозначение. А частота с указанием такта — это уже показатель производительности. Именно тактовая частота указывает на производительность процессоров.
Регулируемая частота
Процессоры — это микросхемы, которые включают миллиарды транзисторов. Высокая плотность компоновки позволяет уместить в одном квадратном сантиметре электрическую схему размером с футбольное поле. Такая конструктивная особенность ставит жесткие условия для работы электроники.
Так, для эффективной работы процессору приходится динамически управлять тактовой частотой. Это полезно для производительности или, наоборот, для снижения нагрева и потребления, поскольку система балансирует на идеальном соотношении мощности и эффективности.
Фирменные технологии, включая Intel Turbo Boost и AMD Precision Boost, лишь частично отвечают за работу алгоритмов управления частотой, их основная цель — повышение частоты сверх базового значения (разгон). Однако динамическая частота берет начало далеко за пределами процессорных технологий — отправной точкой в формировании частоты процессора является тактовый генератор.
Тактовый генератор
Это микросхема, которая синхронизирует работу компьютерных комплектующих. Другими словами, это точные часы, которые независимо и равномерно отбивают такт за тактом. Основываясь на времени между тактами, остальная электроника понимает, когда и как нужно работать.
В современных системах частота тактового генератора зафиксирована на отметке 100 МГц, хотя и может варьироваться в пределах нескольких процентов, чтобы избежать интерференции собственного излучения с высокочастотным излучением других компонентов.
Множитель
Процессор управляет частотой ядер с помощью множителя. Чтобы получить необходимую частоту ядер, система умножает постоянное значение частоты генератора на необходимое значение множителя. В таком случае динамическая частота касается только процессора, тогда как остальные компоненты подчиняются собственным правилам формирования частоты.
До появления новых процессоров, множитель оставался постоянной величиной, потому что его блокировали на заводе аппаратно. Пользователи довольствовались ручной регулировкой частоты через шину: чем выше частота тактового генератора, тем выше частота ядер. В прошлом комплектующие не требовали предельно стабильной частоты BCLK, а в современных платформах ей уделяют особое внимание.
Например, разгоняя систему через шину, мы не только поднимаем частоту процессора, но и увеличиваем частоту оперативной памяти, графического ядра и даже накопителей. К перепадам частоты чувствителен контроллер твердотельного накопителя: он может сыпать ошибками даже при колебаниях шины на 2-3 МГц от заводского значения. Чтобы избежать этого, производители сделали множитель динамическим.
Как работает автоматическая регулировка частоты
Высокая тактовая частота просто необходима для вычислительной мощности ядер. Однако, лишние мегагерцы не только повышают производительность чипа, но также влияют на энергопотребление, нагрев, стабильность и даже безопасность системы. С появлением мощных процессоров появилась необходимость управлять частотой так, чтобы компьютер работал сбалансированно. Есть нагрузка — есть частота, нет нагрузки — процессор отдыхает и не греет воздух в корпусе.
Сначала динамическая частота использовалась для экономии энергии, позже процессоры научились автоматически разгоняться. Производители процессоров догадались, насколько выгодно выпускать чипы, разогнанные с завода. Поэтому тонкое управление частотой и другими параметрами теперь берут на себя фирменные технологии, такие как Intel Turbo Boost и AMD Precision Boost.
Intel Turbo Boost
История фирменной технологии начинается с процессоров i7 серии 9xx. Это семейство Bloomfield, в модельном ряду которого появились чипы с поддержкой технологии Hyper Threading и, конечно, Intel Turbo Boost.
Первая версия позволяла разгонять процессор всего на 200-300 МГц выше базовой частоты. Это было физическим ограничением: кремний того времени тяжело переваривал разгон, и без существенного повышения температуры и напряжения было сложно взять рекордные цифры в полной нагрузке на все ядра.
Но вместе с развитием полупроводников и техпроцессов процессоры приобрели врожденную способность к хорошему разгону. Теперь поднять частоту на 1 ГГц от базовой не составляет труда даже автоматике, особенно после того, как в Intel доработали фирменную технологию и представили несколько дополнительных алгоритмов. Вторая версия Intel Turbo Boost появилась в процессорах еще в 2010 году и по сей день работает даже в самых совершенных и актуальных чипах семейства Rocket Lake.
Как это работает
С помощью технологии Turbo Boost 2.0 процессор управляет тактовой частотой так, чтобы ядра оставались производительными во всех нагрузках без перегрева и выхода за рамки заводского теплопакета. Правда, есть несколько нюансов. Рассмотрим работу Turbo Boost на процессорах Coffee Lake.
Например, TDP процессора составляет 95 ватт, но при этом система буста позволяет процессору в течение некоторого времени работать с большим энергопотреблением. Эти параметры настраиваются автоматически, а материнские платы на базе Z-чипсетов даже позволяют регулировать их вручную:
Настройки, выделенные красным блоком на скриншоте, относятся к технологии Turbo Boost. Это основные параметры, которые влияют на работу автоматического разгона и задают максимумы для разгона процессора. Параметр «Long Duration Package Power Limit» инженеры Intel называют PL1 — это заводской уровень энергопотребления (TDP), который является опорным для работы Turbo Boost. Для Core i7 9700K значение PL1 составляет 95 ватт.
Для работы буста производитель предусмотрел второе значение — Short Duration Package Power Limit или PL2. Этот параметр влияет на абсолютный предел энергопотребления процессора в нагрузке и бусте на все ядра. Стандартная формула для подсчета этого параметра следующая: PL2 = PL1*1.25
В таком случае «вторая скорость» восьмиядерного 9700K может достигать 120 ватт. По замыслу инженеров, именно столько энергии потребляет процессор в заводском разгоне, чтобы оставаться в безопасных значениях по напряжению и нагреву. Правда, чтобы защитить процессор, режим PL2 может работать только ограниченный промежуток времени, после чего откатывается к потреблению по правилам PL1. Это время обозначается как «Package Power Time Window» или «Tau».
Основываясь на этих лимитах, процессоры Intel регулируют частоту. Например, если теплопакет процессора остается в рамках PL1, то частота будет достигать максимума. Если же процессор нагружен так, что его энергопотребление превышает режим PL1 и достигает PL2, то повышенная частота продержится на высоких значениях только заявленное время Tau, а затем вернется на безопасные значения. Intel неохотно раскрывает подробные параметры, однако энтузиасты смогли раздобыть немного интересной информации о семействе Coffee Lake:
Частота процессора в режиме Turbo Boost подчиняется опорной частоте (тактовый генератор) и значению множителя, а также зависит от параметров энергопотребления процессора. Стоит сказать, что настоящие значения PL2 и Tau не всегда соответствуют тем, которые можно рассчитать или найти в открытых источниках. Например, тот же Core i7 9700K может с лихвой перевалить за 140 ватт и работать, если позволяют система охлаждения и подсистема питания.
А можно еще быстрее?
Новые процессоры Intel поддерживают не только Turbo Boost 2.0, но и несколько «надстроек». Это Turbo Boost Max 3.0, Intel Velocity Boost и Intel Adaptive Boost, которые не заменяют основной алгоритм повышения частоты, а расширяют его функционал.
Intel Turbo Boost Max 3.0 — дополнение к основному бусту. Технология сочетает аппаратные алгоритмы Turbo Boost 2.0 и программные, которые определяют самые быстрые ядра процессора и делегируют им однопоточные задачи. В результате частота удачных ядер может подниматься на 15% выше пределов по Turbo Boost. Кроме хорошего охлаждения и питания, для работы технологии необходим соответствующий процессор, а также Windows 10 последней версии.
Intel Velocity Boost — надстройка над заводским разгоном, а также над Turbo Boost 3.0. Алгоритм следит за температурой и позволяет работать всем ядрам процессора с более высокой частотой, если температура не превышает условного значения. Например, для процессоров Comet Lake это значение соответствует 70 °C. Таким образом, десятиядерный процессор может достигать 4.9 ГГц по всем ядрам, тогда как стандартный буст разгонит процессор всего до 4.8 ГГц.
Intel Adaptive Boost — новая технология, она еще не изучена вдоль и поперек, как остальные, но некоторые подробности уже известны. Первыми поддержку получили процессоры Core i9 11900K и Core i9 11900KF семейства Rocket Lake. Принцип работы нового алгоритма заключается в отслеживании температуры ядер и лимитов энергопотребления. Если все данные сходятся в допустимых пределах, то технология разгоняет ядра еще сильнее, чем обычный Turbo Boost и Velocity Boost, позволяя всем потокам одновременно достигать 5.1 ГГц, вместо 4.7 ГГц в стандартном бусте.
Поддержка технологий регулировки частоты зависит от модели процессора, а также его поколения. Например, Velocity Boost, как и новейший Adaptive Boost, поддерживается только топовыми Core i9, тогда как Turbo Boost 2.0 можно встретить даже в моделях Intel Core i3.
AMD Precision Boost
У красного лагеря свое понимание заводского разгона, которое несколько отличается от конкурентов. Например, AMD не привязывает частоту к целым значениям от шины и может регулировать ее вплоть до 25 МГц, тогда как буст Intel всегда кратен 100 МГц. Отсюда и название Precision Boost — «точный разгон». В то же время, принцип регулировки завязан на лимиты потребления, температуры и частоты почти так же, как и Core.
Двое из ларца
В жизни процессоров AMD было несколько технологий настройки частоты. Прошлые поколения использовали алгоритмы Turbo Core, а с появлением ядер Zen и процессоров Ryzen инженеры придумали технологию Precision Boost, которая позже превратилась в версию 2.0. Принцип работы обеих версий турбобуста идентичен. Разгон ядер подчиняется трем ограничениям: температура, мощность и частота. Если представить их в виде равнобедренного треугольника, как это делают инженеры AMD, то получится так:
Синий треугольник обозначает максимумы для каждого из трех пределов процессора. Сиреневый треугольник показывает, каким образом параметры влияют друг на друга при достижении одного из лимитов. Если проще, то, как только процессор упрется в энергопотребление, частота перестанет повышаться и зафиксируется в пределах 25 МГц от лимита частоты (отмечено черным цветом).
Если же процессор быстрее достигнет максимальной температуры, а не лимита потребления, то частота также остановится на определенном, но не максимальном значении. В то же время, если процессор эффективно охлаждается и не ограничен по питанию, то лимит частоты будет пройден, а максимальная тактовая частота процессора достигнет заводского предела — вершины синего треугольника.
Так работает Precision Boost обеих версий. Единственный минус первой версии PB — жесткое снижение частоты при загрузке более двух ядер. Обратимся к наглядному графику:
Сиреневым цветом обозначена работа Precision Boost первой версии, которая работает следующим образом: когда система нагружает одно или два ядра, алгоритм разгона поднимает частоту на максимум, заложенный в процессор с завода.
В случае, если система нагрузит больше двух потоков, буст резко снизит частоту. Получается, что в таком режиме процессор остается производительным только в однопоточных заданиях, а при одновременной нагрузке хотя бы трех ядер резко теряет вычислительную мощность.
Вторая версия алгоритма Precision Boost 2 меняет подход к управлению частотой в зависимости от нагрузки. Во-первых, новая технология позволяет процессорам работать с более высокими частотами. Во-вторых, при нагрузке на все ядра система не сбрасывает частоту резко, а делает это плавно, от ядра к ядру. На графике это обозначено оранжевой линией.
Впрочем, автоматическая регулировка частоты не ограничена физическими лимитами процессора. AMD заявляет, что алгоритмы Precision Boost 2 стали хитрее, поэтому максимальная частота ядер достигается не только в пределах температуры, напряжения и энергопотребления, но также зависит от задач. Например, в приложениях с невысокой нагрузкой на процессор, ядра будут работать на повышенных частотах, даже если это нагрузка сразу на все потоки. В то же время процессор будет немного снижать частоту в рендеринге и других трудоемких заданиях.
Заводской Boost лучше ручного разгона
Производителям удалось сделать то, к чему пользователи стремились в течение многих лет: современные процессоры работают намного эффективнее предшественников благодаря автоматической частоте. Если раньше энтузиасты настраивали частоту ядер через аппаратные модификации материнских плат и процессоров, то сегодня для настройки достаточно нажать кнопку «Включить» на системном блоке. Остальное за нас сделает автоматика.
Порой она работает эффективнее, чем ручная настройка. Когда мануальный разгон заставляет все ядра работать с одинаковой частотой, турбобуст позволяет разгонять отдельные ядра выше, чем это возможно в ручном режиме. Поэтому однопоточная производительность актуальных чипов показывает неплохие цифры, которых не всегда можно добиться настройками в BIOS.
Более того, заводские алгоритмы повышения частоты следят за состоянием процессора и подсистемы питания, они не позволят электронике работать на пределе стабильности и безопасности. Неопытный пользователь вряд ли обеспечит системе такой уровень качества, настраивая частоту и напряжение на ядрах самостоятельно.
Огромный плюс заводского буста — высокая тактовая частота даже на процессорах с заблокированным разгоном. Поэтому даже бюджетный шестиядерный процессор все еще эффективен в играх и там, где важен показатель IPC — однопоточной производительности.