Тип двигателя коллекторный что это
Коллекторный двигатель постоянного и переменного тока
В бытовом электрооборудовании, где используются электродвигатели, как правило, устанавливаются электромашины с механической коммутацией. Такой тип двигателей называют коллекторными (далее КД). Предлагаем рассмотреть различные виды таких устройств, их принцип действия и конструктивные особенности. Мы также расскажем о достоинствах и недостатках каждого из них, приведем примеры сферы применения.
Что такое коллекторный двигатель?
Под таким определением подразумевается электромашина, преобразовывающая электроэнергию в механическую, и наоборот. Конструкция устройства предполагает наличие хотя бы одной обмотки подсоединенной к коллектору (см. рис. 1).
Рисунок 1. Коллектор на роторе электродвигателя (отмечен красным)
В КД данный элемент конструкции используется для переключения обмоток и в качестве датчика, позволяющего определить положение якоря (ротора).
Виды КД
Классифицировать данные устройства принято по типу питания, в зависимости от этого различают две группы КД:
Первые, делятся на два подвида, в зависимости от организации индуктора он может быть на постоянных магнитах или специальных катушках возбуждения. Они служат для создания магнитного потока, необходимого для образования вращательного момента. КД, где используются катушки возбуждения, различают по типам обмоток, они могут быть:
Разобравшись с видами, рассмотрим каждый из них.
КД универсального типа
На рисунке ниже представлен внешний вид электромашины данного типа и ее основные элементы конструкции. Данное исполнение характерно практически для всех КД.
Конструкция универсального коллекторного двигателя
Обозначения:
У устройств данного типа, возбуждение может быть последовательным и параллельным, но поскольку последний вариант сейчас не производят, мы его не будем рассматривать. Что касается универсальных КД последовательного возбуждения, то типовая схема таких электромашин представлена ниже.
Схема универсального коллекторного двигателя
Универсальный КД может работать от переменного напряжения благодаря тому, что когда происходит смена полярности, ток в обмотках возбуждения и якоря также меняет направление. В результате этого вращательный момент не изменяет своего направления.
Особенности и область применения универсальных КД
Основные недостатки данного устройства проявляются при его подключении к источникам переменного напряжения, что отражается в следующем:
Ранее КД широко применялись, во многих бытовых электроприборах (инструмент, стиральные машины, пылесосы и т.д.). На текущий момент производители практически престали использовать данный тип двигателей отдав предпочтение безколлекторным электромашинам.
Теперь рассмотрим коллекторные электромашины, работающие от источников постоянного напряжения.
КД с индуктором на постоянных магнитах
Конструктивно такие электромашины отличаются от универсальных тем, что вместо катушек возбуждения используются постоянные магниты.
Конструкция коллекторного двигателя на постоянных магнитах и его схема
Этот вид КД получил наибольшее распространение по сравнению с другими электромашинами данного типа. Это объясняется невысокой стоимостью вследствие простоты конструкции, простым управлением скорости вращения (зависит от напряжения) и изменением его направления (достаточно изменить полярность). Мощность двигателя напрямую зависит от напряженности поля, создаваемого постоянными магнитами, что вносит определенные ограничения.
Основная сфера применения – маломощные приводы для различного оборудования, часто используется в детских игрушках.
КД на постоянных магнитах с игрушки времен СССР
К числу преимуществ можно отнести следующие качества:
Основные недостатки:
Для устранения одного из основных недостатков данных устройств (старения магнитов) в системе возбуждения используются специальные обмотки, перейдем к рассмотрению таких КД.
Независимые и параллельные катушки возбуждения
Первые получили такое название вследствие того, что обмотки индуктора и якоря не подключаются друг к другу и запитываются отдельно (см. А на рис. 6).
Рисунок 6. Схемы КД с независимой (А) и параллельной (В) обмоткой возбуждения
Особенность такого подключения заключается в том, что питание U и UK должны отличаться, в противном случае н возникнет момент силы. Если невозможно организовать такие условия, то катушки якоря и индуктора подключается параллельно (см. В на рис. 6). Оба вида КД обладают одинаковыми характеристиками, мы сочли возможным объединить их в одном разделе.
Момент силы у таких электромашин высокий при низкой частоте вращения и уменьшается при ее увеличении. Характерно, что токи якоря и катушки независимы, а общий ток является суммой токов, проходящих через эти обмотки. В результат этого, при падении тока катушки возбуждения до 0, КД с большой вероятностью выйдет из строя.
Сфера применения таких устройств – силовые установки с мощностью от 3 кВт.
Положительные черты:
Минусы:
Последовательная катушка возбуждения
Схема такого КД представлена на рисунке ниже.
Схема КД с последовательным возбуждением
Поскольку обмотки включены последовательно, то ток в них будет равным. В результате этого, когда ток в обмотке статора становится меньше, чем номинальный (это происходит при небольшой нагрузке), уменьшается мощность магнитного потока. Соответственно, когда нагрузка увеличивается, пропорционально увеличивается мощность потока, вплоть до полного насыщения магнитной системы, после чего эта зависимость нарушается. То есть, в дальнейшем рост тока в обмотке катушки якоря не приводит к увеличению магнитного потока.
Указанная выше особенность проявляется в том, что КД данного типа непозволительно запускать при нагрузке на четверть меньше номинальной. Это может привести к тому, что ротор электромашины резко увеличит частоту вращения, то есть, двигатель пойдет «в разнос». Соответственно, такая особенность вносит ограничения на сферу применения, например, в механизмах с ременной передачей. Это связано с тем, что при ее обрыве электромашина начинает работать в холостом режиме.
Указанная особенность не распространяется на устройства, чья мощность менее 200 Вт, для них допустимы падения нагрузки вплоть до холостого режима работы.
Преимущества КД с последовательной катушкой, такие же, как у предыдущей модели, за исключением простоты и динамичности управления. Что касается минусов, то к ним следует отнести:
Смешанные катушки возбуждения
Как видно из схемы, представленной на рисунке ниже, индуктор на КД данного типа обладает двумя катушками, подключенных последовательно и параллельно обмотке ротора.
Схема КД со смешанными катушками возбуждения
Как правило, одна из катушек обладает большей намагничивающей силой, поэтому она считается, как основная, соответственно, вторая – дополнительная (вспомогательная). Допускается встречное и согласованное включение катушек, в зависимости от этого интенсивность магнитного потока соответствует разности или сумме магнитных сил каждой обмотки.
При встречном включении характеристики КД становятся близкими к соответствующим показателям электромашин с последовательным или параллельным возбуждением (в зависимости от того, какая из катушек является основной). То есть, такое включение актуально, если необходимо получить результат в виде неизменной частоты оборотов или их увеличению при возрастании нагрузки.
Согласованное включение приводит к тому, что характеристики КД будут соответствовать среднему значению показателями электромашин с параллельными и последовательными катушками возбуждения.
Единственный недостаток такой конструкции – самая высокая стоимость в сравнении с другими типами КД. Цена оправдывается благодаря следующими положительными качествами:
В чем разница между коллекторными и бесколлекторными моторами?
Вступление
Наверняка у каждого новичка, который впервые связал свою жизнь с электромоделями на радиоуправлении, после тщательного изучения начинки, появляется вопрос. Что такое коллекторный (Brushed) и бесколлекторный (Brushless) двигатель? Какой из них лучше поставить на свою радиоуправляемую электромодель?
Коллекторные моторы, которые так часто используются для приведения в движение электромоделей на радиоуправлении, имеют всего два исходящих питающих провода. Один из них «+» другой « — ». В свою очередь они подключаются к регулятору скорости вращения. Разобрав коллекторный мотор, вы всегда там найдете 2 магнита изогнутой формы, вал совместно с якорем, на который намотана медная нить (проволока), где по одну сторону вала стоит шестерня, а по другую сторону располагается коллектор, собранный из пластин, в составе которых чистая медь.
Принцип работы коллекторного мотора
Электрический ток (DC или direct current), поступая на обмотки якоря (в зависимости от их количества на каждую по очереди) создает в них электромагнитное поле, которое с одной стороны имеет южный полюс, а с другой стороны северный.
Многие знают, что, если взять два любых магнита и приставить их одноименными полюсами друг другу, то они не за что не сойдутся, а если приставить разноименными, то они прилипнут так, что не всегда возможно их разъединить.
Так вот, это электромагнитное поле, которое возникает в любой из обмоток якоря, взаимодействуя с каждым из полюсов магнитов статора, приводит в действие (вращение) сам якорь. Далее ток, через коллектор и щетки переходит к следующей обмотке и так последовательно, переходя от одной обмотки якоря к другой, вал электродвигателя совместно с якорем вращается, но лишь до тех пор, пока к нему подается напряжение.
В стандартном коллекторном моторе якорь имеет три полюса (три обмотки) – это сделано для того чтобы движок не «залипал» в одном положении.
Минусы коллекторных моторов
Сами по себе коллекторные моторы неплохо справляются со своей работой, но это лишь до того момента пока не возникает необходимость получить от них на выходе максимально высокие обороты. Все дело в тех самых щетках, о которых упоминалось выше. Так как они всегда находятся в плотном контакте с коллектором, то в результате высоких оборотов в месте их соприкосновения возникает трение, которое в дальнейшем вызовет скорый износ обоих и в последствии приведёт к потере эффективной мощности эл. двигателя. Это самый весомый минус таких моторов, который сводит на нет все его положительные качества.
Принцип работы бесколлекторного мотора
Здесь все наоборот, у моторов бесколлекторного типа отсутствуют как щетки так и коллектор. Магниты в них располагаются строго вокруг вала и выполняют функцию ротора. Обмотки, которые имеют уже несколько магнитных полюсов, размещаются вокруг него. На роторе бесколлектоных моторов устанавливается так называемый сенсор (датчик) который будет контролировать его положение и передавать эту информацию процессору который работает в купе с регулятором скорости вращения (обмен данными о положении ротора происходит более 100 раз в секунду). На выходе мы получаем более плавную работу самого мотора с максимальной отдачей.
Бесколлекторные моторы могут быть с датчиком (сенсором) и без него. Отсутствие датчика незначительно снижает эффективность работы мотора, поэтому их отсутствие вряд ли расстроит новичка, но зато, приятно удивит ценник. Отличить друг от друга их просто. У моторов с датчиком, помимо 3-х толстых проводов питания есть еще дополнительный шлейф из тонких, которые идут к регулятору скорости. Не стоит гнаться за моторами с датчиком как новичку так и любителю, т.к их потенциал оценит только профи, а остальные просто переплатят, причем значительно.
Плюсы бесколлекторных моторов
Почти нет изнашиваемых деталей. Почему «почти», потому что вал ротора устанавливается на подшипники, которые в свою очередь имеют свойство изнашиваться, но ресурс у них крайне велик, да и взаимозаменяемость их очень проста. Такие моторы очень надежны и эффективны. Устанавливается датчик контроля положения ротора. На коллекторных моторах работа щеток всегда сопровождается искрением, что впоследствии вызывает помехи в работе радиоаппаратуры. Так вот у бесколлектоных, как вы уже поняли, эти проблемы исключены. Нет трения, нет перегрева, что так же является существенным преимуществом. По сравнению с коллекторными моторами не требуют дополнительного обслуживания в процессе эксплуатации.
Минусы бесколлекторных моторов
У таких моторов минус только один, это цена. Но если посмотреть на это с другой стороны, и учесть тот факт что эксплуатация бесколлекторных моторов освобождает владельца сразу от таких заморочек как замена пружин, якоря, щеток, коллекторов, то вы с легкостью отдадите предпочтение в пользу последних.
Коллекторный двигатель
1. Применение коллекторных двигателей в стиральных машинах
Коллекторные двигатели получили широкое применение не только в электроинструменте (дрели, шуруповёрты, болгарки и т.д), мелких бытовых приборах (миксеры, блендеры, соковыжималки и т.п), но и в стиральных машинах в качестве двигателя привода барабана. Коллекторными двигателями оснащено большинство (примерно 85%) всех бытовых стиральных машин. Эти двигатели применялись уже во многих стиральных машинах ещё с середины 90-х годов и со временем полностью вытеснили однофазные конденсаторные асинхронные двигатели.
Коллекторные моторы более компактные, мощные и простые в управлении. Этим и объясняется их столь массовое применение. В стиральных машинах применяются коллекторные двигатели таких марок производителей как: INDESCO, WELLING, C.E.S.E.T., SELNI, SOLE, FHP, ACC. Внешне они немного отличаются друг от друга, могут иметь разную мощность, тип крепления, но принцип работы их совершенно одинаковый.
2. Устройство коллекторного двигателя для стиральной машины
1. Статор
2. Коллектор ротора
3. Щётка (применяются всегда две щётки,
вторую на рисунке не видно)
4. Магнитный ротор тахогенератора
5. Катушка (обмотка) тахогенератора
6. Стопорная крышка тахогенератора
7. Клеммная колодка двигателя
8. Шкив
9. Алюминиевый корпус
Рис.2 Конструкция коллекторного двигателя стиральной машины
Чтобы в дальнейшем лучше понять как работает коллекторный двигатель, давайте рассмотрим устройство каждого из его основных узлов.
3. Ротор (якорь)
4. Статор
5. Щётка
6.Тахогенератор
В коллекторных двигателях некоторых моделей стиральных машин марки Bosch (Бош) и Siemens (Сименс) вместо тахогенератора применяется датчик Холла. Это очень компактный и недорогой полупроводниковый прибор, который устанавливается на неподвижной части двигателя и взаимодействует с магнитным полем кругового магнита установленным на валу ротора непосредственно рядом с коллектором. У датчика Холла три вывода, сигналы с которого так же считываются и обрабатываются электронной схемой (подробно принцип работы датчика Холла в данной статье мы рассматривать не будем).
7. Схема подключения коллекторного двигателя
Как и в любом электродвигателе, принцип работы коллекторного двигателя основан на взаимодействии магнитных полей статора и ротора, через которые проходит электрический ток. Коллекторный двигатель стиральной машины имеет последовательную схему подключения обмоток. В этом легко убедится рассмотрев его развёрнутую схему подключения к электрической сети (Рис.7).
У коллекторных двигателей стиральных машин, на контактной колодке может быть от 6 до 10 задействованных контактов. На рисунке представлены все максимальные 10 контактов и всевозможные варианты подключения узлов двигателя.
Зная устройство, принцип работы и стандартную схему подключения коллекторного двигателя, без труда можно запустить любой двигатель напрямую от электросети без применения электронной схемы управления и для этого не надо запоминать особенности расположения выводов обмоток на клеммной колодке каждой марки двигателя. Для этого, достаточно всего лишь определить выводы обмоток статора и щёток и подключить их согласно схеме на приведённом ниже рисунке.
Порядок расположения контактов клеммной колодки коллекторного двигателя стиральной машины выбран произвольно.
На схеме, оранжевыми стрелочками условно показано направление тока по проводникам и обмоткам двигателя. От фазы (L) ток идёт через одну из щёток на коллектор, проходит по виткам обмотки ротора и выходит через другую щётку и через перемычку ток последовательно проходит по обмоткам обеих секций статора доходя до нейтрали (N).
Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону.
Для того, чтобы двигатель начал вращаться в другую сторону, необходимо лишь изменить последовательность коммутации обмоток.
Пунктирной линией обозначены элементы и выводы, которые задействованы не во всех двигателях. Например датчик Холла, выводы термозащиты и вывод половины обмотки статора. При запуске коллекторного двигателя напрямую, подключаются только обмотки статора и ротора (через щётки).
Внимание! Представленная схема подключения коллекторного двигателя напрямую, не имеет средств электрической защиты от короткого замыкания и устройств ограничивающих ток. При таком подключении от бытовой сети, двигатель развивает полную мощность, поэтому не следует допускать длительного прямого включения.
8. Управление коллекторным двигателем в стиральной машине
Принцип действия электронных схем, в которых используется симистор, основан на двухполупериодном фазовом управлении. На графике (рис.9) показано как изменяется величина питающего мотор напряжения в зависимости от поступающих на управляющий электрод симистора импульсов с микроконтроллера.
Таким образом можно отметить,что частота вращения ротора двигателя напрямую зависит от напряжения прикладываемого к обмоткам двигателя.
Изменение направления вращения двигателя
Т-тахогенератор
М-ротор (коллекторно-щёточный узел)
S-статор
P-тепловая защита
TY-симистор
R1 и R2— коммутирующие реле
В некоторых стиральных машинах, коллекторный двигатель работает на постоянном токе. Для этого, в схеме управления, после симистора, устанавливают выпрямитель переменного тока построенный на диодах («диодный мост»). Работа коллекторного двигателя на постоянном токе увеличивает его КПД и максимальный крутящий момент.
9. Достоинства и недостатки универсальных коллекторных двигателей
10. Неисправности коллекторных двигателей
Иногда происходит межвитковое замыкание обмотки ротора или статора (значительно реже), что так же проявляется в сильном искрении коллекторно-щёточного узла (из-за повышенного тока) или ослаблении магнитного поля двигателя, при котором ротор двигателя не развивает полноценный крутящий момент.
Как мы и говорили выше, щётки в коллекторных двигателях при трении о коллектор со временем стачиваются. Поэтому большая часть всех работ по ремонту двигателей сводится к замене щёток.
Стоит отметить,что надёжность коллекторного двигателя во многом зависит от того, насколько качественно и грамотно производители подходят к технологическому процессу его изготовления и сборки.
Коллекторный двигатель: Устройство, виды и принцип работы
Большое количество оборудования имеет силовые установки, работающие от электрической сети питания. Коллекторный двигатель это силовая установка, преобразующая электрическую энергию в физическую силу. Отличие коллекторного двигателя от бесколлекторного состоит в наличии коллекторно-щеточного узла.
Виды коллекторных двигателей
В зависимости от источника тока, к которому подключается мотор, коллекторные установки делят на два вида:
СПРАВКА: Универсальный коллекторный силовой агрегат отличается простотой конструкции и небольшими габаритно массовыми параметрами. Благодаря этому может быть использован в качестве силовой установки ручного инструмента.
В зависимости от максимальной мощности силовые установки делятся на три типа:
Устройство коллекторного двигателя
Для того чтобы понять как работает коллекторный двигатель, необходимо разобраться в его конструкции. Независимо от вида силового агрегата он состоит из следующих основных элементов:
ВАЖНО: Щётки или держатели оснащаются пружинами. Они необходимы для прижимания щетки к коллектору во время работы силовой установки.
Принцип работы коллекторного двигателя
Коллекторный двигатель переменного тока 220 Вольт и мотор постоянного тока, преобразуют электрическую энергию в физическую силу. Создание физической силы осуществляется путём раскручивания якоря, установленного на двух подшипниках в корпусе мотора.
Ротор и статор силового агрегата имеют обмотки. Они изготовлены из провода. Во избежание замыкание витков обмотки между собой провод выполнен в изолирующей оболочке. Напряжение подается на обмотку статора при помощи провода.
Якорь коллекторного мотора подвижный. Для передачи напряжения на обмотку якоря используется коллектор.
Он выполнен в виде медных контактов. На них передаётся напряжение через графитовые щетки. Такая конструкция позволяет передавать напряжение на обмотку якоря независимо от скорости его вращения.
При прохождении электрического тока через обмотки возникает магнитное поле. Обмотка якоря имеет магнитное поле противоположной полярности полю обмотки статора. Под воздействием электромагнитных полей разной полярности якорь двигателя начинает вращаться.
ВНИМАНИЕ: Коллекторный двигатель может быть использован в качестве генератора постоянного тока.
Варианты обмоток возбуждения
Подключить коллекторный двигатель постоянного тока можно несколькими способами. Возбуждение мотора зависит от способа подключения обмоток.
ВАЖНО: Использование коллекторного мотора с последовательным подключением без нагрузки, может привести к выходу его из строя.
Преимущества и недостатки коллекторного двигателя
Однофазный коллекторный двигатель переменного тока или аналогичный работающий от источника постоянного тока имеют плюсы и минусы.
Возможные поломки и способы их ремонта
В результате работы коллекторного двигателя могут возникнуть неисправности. Большинство из них самостоятельно сможет устранить человек не имеющий специализированных технических знаний и оборудования. Ниже представлены наиболее часто возникающие неисправности.
Повышенный шум при работе узла. Сильный уровень шума при работе мотора может свидетельствовать о выходе из строя подшипников, на которые установлен якорь.
При выходе из строя подшипников качения необходимо заменить изношенные детали новыми.
Износ щёток. Критическая изношенность щёток сопровождается повышенным уровнем шума при работе. Несвоевременная замена может привести к поломке коллектора. При возникновении неисправности необходимо заменить графитовые щётки. При выборе щёток необходимо обратить внимание на их толщину. Новые детали не должны застревать в держателях.
Отсутствие вращения якоря при подключении мотора к сети питания. Отсутствие вращения может возникнуть в результате обрыва цепи питания. Обрыв может произойти в результате поломки пружины прижимающей щётку к коллектору или при обрыве провода. При поломке пружины необходимо заменить ее новой деталью. При обрыве провода необходимо восстановить его целостность.
Отсутствие вращения ротора может возникнуть в результате выхода из строя предохранителя. Для восстановления работоспособности необходимо установить новый предохранитель. Перед установкой предохранителя необходимо определить причину, по которой старое устройство вышло из строя. После устранения причины можно установить предохранитель и провести испытание двигателя.
Отсутствие регулировки вращения вала якоря. После запуска агрегат работает на максимальных оборотах. Такая неисправность возникает в результате поломки реостата. Для восстановления работоспособности двигателя необходимо заменить регулятор.
Медленное вращение ротора. Снижение частоты вращения вала может возникнуть в результате низкого напряжения в сети питания. Необходимо проверить напряжение. Снижение оборотов якоря может быть спровоцировано высокой нагрузкой. Необходимо снизить нагрузку на якорь.
Из вышеперечисленного следует, что коллекторный мотор преобразовывает электрическую энергию в физическую силу. Для передачи напряжения к обмоткам якоря используются щётки. Моторы отличаются простотой конструкции и небольшими габаритно массовыми параметрами.