Пропан C3H8 – это предельный углеводород, содержащий три атома углерода в углеродной цепи. Бесцветный газ без вкуса и запаха, нерастворим в воде и не смешивается с ней.
Гомологический ряд пропана
Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп –СН2– друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.
Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь алкана.
Название алкана
Формула алкана
Метан
CH4
Этан
C2H6
Пропан
C3H8
Бутан
C4H10
Пентан
C5H12
Гексан
C6H14
Гептан
C7H16
Октан
C8H18
Нонан
C9H20
Декан
C10H22
Общая формула гомологического ряда алканов CnH2n+2.
Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества.
Строение пропана
В молекулах алканов встречаются химические связи C–H и С–С.
Связь C–H ковалентная слабополярная, связь С–С – ковалентная неполярная. Это одинарные σ-связи. Атомы углерода в алканах образуют по четыре σ-связи. Следовательно, гибридизация атомов углерода в молекулах алканов – sp 3 :
Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109 о 28′ друг к другу:
Это соответствует тетраэдрическому строению.
Например, в молекуле пропана C3H8 атомы водорода располагаются в пространстве в вершинах тетраэдров, центрами которых являются атомы углерода. При этом углеродный скелет образует угол, т.е. геометрия молекулы — уголковая или V-образная.
Изомерия пропана
Для пропана не характерно наличие изомеров – ни структурных (изомерия углеродного скелета, положения заместителей), ни пространственных.
Химические свойства пропана
Пропан – предельный углеводород, поэтому он не может вступать в реакции присоединения.
Для пропана характерны реакции:
Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.
Поэтому для пропана характерны радикальные реакции.
Пропан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.
1. Реакции замещения
В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.
1.1. Галогенирование
Пропан реагирует с хлором и бромом на свету или при нагревании.
При хлорировании пропана образуется смесь хлорпроизводных.
Например, при хлорировании пропана образуются 1-хлорпропан и 2-хлопропан:
Бромирование протекает более медленно и избирательно.
Избирательность бромирования: сначала замещается атом водорода у третичного атома углерода, затем атом водорода у вторичного атома углерода, и только затем первичный атом.
С третичный–Н > С вторичный–Н > С первичный–Н
Например, при бромировании пропана преимущественно образуется 2-бромпропан:
Хлорпропан может взаимодействовать с хлором и дальше с образованием дихлорпропана, трихлорпропана, тетрахлорпропана и т.д.
1.2. Нитрование пропана
Пропан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании и под давлением. Атом водорода в пропане замещается на нитрогруппу NO2.
Например. При нитровании пропана образуется преимущественно 2-нитропропан:
2.Дегидрирование пропана
Дегидрирование – это реакция отщепления атомов водорода.
В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.
При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, разрываются связи С–Н у соседних атомов углерода и образуются двойные и тройные связи.
Например, п ри дегидрировании пропана образуются пропен (пропилен) или пропин:
3. Окисление пропана
Пропан – слабополярное соединение, поэтому при обычных условиях он не окисляется даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).
3.1. Полное окисление – горение
Пропан горит с образованием углекислого газа и воды. Реакция горения пропана сопровождается выделением большого количества теплоты.
Уравнение сгорания алканов в общем виде:
При горении пропана в недостатке кислорода может образоваться угарный газ СО или сажа С.
Получение пропана
1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)
Это один из лабораторных способов получения алканов. При этом происходит удвоение углеродного скелета.
При проведении синтеза со смесью разных галогеналканов образуется смесь разных алканов.
Например, при взаимодействии хлорметана и хлорэтана с натрием помимо пропана образуются этан и бутан.
Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.
R–COONa + NaOH→R–H + Na2CO3
Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.
При взаимодействии бутаноата натрия с гидроксидом натрия при сплавлении образуются пропан и карбонат натрия:
CH3–CH2 – CH2 –COONa + NaOH→CH3–CH2– CH3 + Na2CO3
3. Гидрирование алкенов и алкинов
Пропан можно получить из пропилена или припина:
При гидрировании пропена образуется пропан:
При полном гидрировании пропина также образуется пропан:
4. Синтез Фишера-Тропша
Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:
Это промышленный процесс получения алканов.
Из угарного газа и водорода можно получить пропан:
Пропан практически не растворим в воде, так как его молекулы малополярны и не взаимодействуют с молекулами воды. Он хорошо растворяется в неполярных органических растворителях, таких как бензол, тетрахлорметан, диэтиловый эфир и др.
Рис. 1. Строение молекулы пропана.
Таблица 1. Физические свойства пропана.
Плотность (20 o С), кг/м 3
Температура плавления, o С
Температура кипения, o С
Получение пропана
Основными источниками пропана являются нефть и природный газ. Его можно выделить фракционной перегонкой природного газа или бензиновой фракции нефти.
В лабораторных условиях пропан получают следующими способами:
— гидрированием непредельных углеводородов
— по реакции щелочного плавления солей одноосновных органических кислот
— взаимодействием галогеналканов с металлическим натрием (реакция Вюрца)
Химические свойства пропана
В обычных условиях пропан не реагирует с концентрированными кислотами, расплавленными и концентрированными щелочами, щелочными металлами, галогенами (кроме фтора), перманганатом калия и дихроматом калия в кислой среде.
Для пропана наиболее характерны реакции, протекающие по радикальному механизму. Энергетически более выгоден гомолитический разрыв связей C-H и C-C, чем их гетеролитический разрыв.
Все химические превращения пропана протекают с расщеплением:
Аналогичны свойствам других представителей ряда алканов (дегидрирование, хлорирование и т. д.)
Применение
Топливо
Хранится и перевозится в металлических баллонах ярко-красного цвета (не путать с коричневыми баллонами для гелия)
Химия и пищевая промышленность
В химической промышленности используется при получении мономеров для производства полипропилена.
Является исходным сырьём для производства растворителей.
В пищевой промышленности пропан зарегистрирован в качестве пищевой добавки E944.
Хладагент
Смесь из осушенного чистого пропана (R-290a) (коммерческое обозначение для описания изобутаново-пропановых смесей) с изобутаном (R-600a) не разрушает озонового слоя и обладает низким коэффициентом парникового потенциала (GWP). Смесь подходит для функционального замещения устаревших хладагентов (R-12, R-22, R-134a) в традиционных стационарных холодильных установках и систем кондиционирования воздуха (с обязательной сменой типа компрессорного масла).
Примечания
Полезное
Смотреть что такое «Пропан» в других словарях:
ПРОПАН — (С3Н8), бесцветный, легковоспламеняющийся газ, третий в АЛИФАТИЧЕСКОМ РЯДУ УГЛЕВОДОРОДОВ. Встречается в ПРИРОДНОМ ГАЗЕ, из которого пропан и добывается. Получается также при ПЕРЕГОНКЕ нефти. Пропан применяется в качестве топлива (в виде… … Научно-технический энциклопедический словарь
пропан — а, м. propan m. нем. Propan <гр. pro перед, до + pion жир. Органическое соединение, представляющее собой насыщенный углеводород; применяется как бытовое топливо и в двигателях внутреннего сгорания. БАС 1. Только газ гармонирует с современным… … Исторический словарь галлицизмов русского языка
ПРОПАН — Углеводород, находимый в сырой нефти, газ. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. пропан органическое соединение, насыщенный углеводород алифатического ряда; газ без цвета и запаха; содержится в природных… … Словарь иностранных слов русского языка
Пропан — С3Н8, насыщенный углеводород парафинового ряда. В стандартных условиях П. газ без цвета и запаха, относится к пожаро и взрывоопасным веществам. Молекулярная масса 44,097 кг/кмоль, температура плавления 85,47 К, температура кипения 231,08 К,… … Энциклопедия техники
Пропан — Пропан, диметилметан, C3H8= СН3. СН2. СН3 углеводород предельногоряда CnH2n+2, находится в природе в сырой нефти, газообразен, сгущаетсяв жидкость ниже 17 … Энциклопедия Брокгауза и Ефрона
ПРОПАН — (CH3CH2CH3) предельный (насыщенный) углеводород ряда метана; бесцветный газ. Содержится в природных и нефтяных газах, в газах нефтепереработки. Применяют в органическом синтезе (напр., в производстве пропилена), а также как растворитель,… … Российская энциклопедия по охране труда
пропан — (C3Н8) [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN propane … Справочник технического переводчика
Пропан — ПРОПАН, C3H8, бесцветный горючий газ, tкип 42,1 °C. Содержится в природных и нефтяных газах, образуется при крекинге нефтепродуктов. В смеси с бутаном используется как бытовое и моторное топливо. … Иллюстрированный энциклопедический словарь
Пропан, C3H8 – органическое вещество класса алканов. В природе содержится в природном газе, добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе. Образуется также при крекинге нефтепродуктов.
Пропан, формула, газ, характеристики:
Химическая формула пропана C3H8, рациональная формула CH3CH2CH3. Изомеров не имеет.
Пропан – бесцветный газ, без вкуса и запаха. Однако в пропан, используемый в качестве технического газа, могут добавляться одоранты – вещества, имеющие резкий неприятный запах для предупреждения его утечки.
Пожаро- и взрывоопасен.
Не растворяется в воде и других полярных растворителях. Зато растворяется в некоторых неполярных органических веществах (метанол, ацетон, бензол, тетрахлорметан, диэтиловый эфир и другие).
Пропан по токсикологической характеристике относится к веществам 4-го класса опасности (малоопасным веществам) по ГОСТ 12.1.007.
Физические свойства пропана:
Наименование параметра:
Значение:
Цвет
без цвета
Запах
без запаха
Вкус
без вкуса
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.)
газ
Плотность (при 20 °C и атмосферном давлении 1 атм.), кг/м 3
1,8641
Плотность (при температуре кипения и атмосферном давлении 1 атм.), кг/м 3
585
Температура плавления, °C
-187,6
Температура кипения, °C
-42,09
Температура самовоспламенения, °C
472
Критическая температура*, К
370
Критическое давление, МПа
4,27
Критический удельный объём, м 3 /кг
0,00444
Взрывоопасные концентрации смеси газа с воздухом, % объёмных
от 1,7 до 10,9
Удельная теплота сгорания, МДж/кг
48
Молярная масса, г/моль
44,1
* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.
Химические свойства пропана:
Пропан трудно вступает в химические реакции. В обычных условиях не реагирует с концентрированными кислотами, расплавленными и концентрированными щелочами, щелочными металлами, галогенами (кроме фтора), перманганатом калия и дихроматом калия в кислой среде.
Химические свойства пропана аналогичны свойствам других представителей ряда алканов. Поэтому для него характерны следующие химические реакции:
Реакция носит цепной характер. Молекула брома или йода под действием света распадается на радикалы, затем они атакуют молекулы пропана, отрывая у них атом водорода, в результате этого образуется свободный пропил CH3-CH·-CH3, который сталкиваются с молекулами брома (йода), разрушая их и образуя новые радикалы йода или брома :
Br2 → Br·+ Br· (hv); – инициирование реакции галогенирования;
CH3-CH2-CH3 + Br· → CH3-CH·-CH3 + HBr; – рост цепи реакции галогенирования;
CH3-CH·-CH3 + Br· → CH3-CHBr-CH3; – обрыв цепи реакции галогенирования.
Галогенирование — это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атомы галогенируются в последнюю очередь). Галогенирование пропана проходит поэтапно – за один этап замещается не более одного атома водорода.
Галогенирование будет происходить и далее, пока не будут замещены все атомы водорода.
При избытке кислорода:
Горит желтым пламенем.
Получение пропана. Химические реакции – уравнения получения пропана:
Пропан в лабораторных условиях получается в результате следующих химических реакций:
Применение и использование пропана:
– для проведения различных технологических операций, например, газопламенных работ;
– как сырье в химической промышленности для производства других химических веществ, например, растворителей, полипропилена;
– в пищевой промышленности как пищевая добавка E944, используемая в качестве пропеллента;