С чем реагирует сероводородная кислота

Сероводород H2S и сульфиды- химические свойства

Физические свойства сероводорода:

Получение сероводорода:

1) Из простых веществ: H2 + S t° → H2S

2) Реакцией обмена: FeS + 2HCl→FeCl2 + H2

Химические свойства сероводорода:

1) Раствор H2S в воде – слабая двухосновная кислота.

Сероводородная кислота образует два ряда солей — средние (сульфиды) и кислые (гидросульфиды).

2) Взаимодействует с основаниями:

3) Качественная реакция на сероводород и растворимые сульфиды — образование темно-коричневого (почти черного) осадка PbS:

4) H2S проявляет очень сильные восстановительные свойства:

5) Сероводород окисляется кислородом:

6) Серебро при контакте с сероводородом чернеет:

Сульфиды — получение и химический свойства

Получение сульфидов:

1) Многие сульфиды получают нагреванием металла с серой:

Hg + S → HgS (при комнатной температуре)

2) Растворимые сульфиды получают действием сероводорода на щелочи:

3) Нерастворимые сульфиды получают обменными реакциями:

Химические свойства сульфидов:

1) Растворимые сульфиды сильно гидролизованы, вследствие чего их водные растворы имеют щелочную реакцию:

2) Нерастворимые сульфиды можно перевести в растворимое состояние действием концентрированной HNO3:

3) Водорастворимые сульфиды растворяют серу с образованием полисульфидов:

Полисульфиды при окислении превращаются в тиосульфаты, например:

Источник

Сероводород

Сероводород

Строение молекулы и физические свойства

Сероводород H2S – это бинарное соединение водорода с серой, относится к летучим водородным соединениям. Следовательно, сероводород бесцветный ядовитый газ, с запахом тухлых яиц. Образуется при гниении. В твердом состоянии имеет молекулярную кристаллическую решетку.

С чем реагирует сероводородная кислота. Смотреть фото С чем реагирует сероводородная кислота. Смотреть картинку С чем реагирует сероводородная кислота. Картинка про С чем реагирует сероводородная кислота. Фото С чем реагирует сероводородная кислота

Способы получения сероводорода

1. В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

FeS + 2HCl → FeCl2 + H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.

2. Также сероводород образуется при взаимодействии растворимых солей хрома (III) и алюминия с растворимыми сульфидами. Сульфиды хрома (III) и алюминия необратимо гидролизуются в водном растворе.

Например: х лорид хрома (III) реагирует с сульфидом натрия с образованием гидроксида хрома (III), сероводорода и хлорида натрия:

Химические свойства сероводорода

1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

H2S + 2NaOH → Na2S + 2H2O
H2S + NaOH → NaНS + H2O

В избытке кислорода:

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S + Br2 → 2HBr + S↓

H2S + Cl2 → 2HCl + S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

При кипячении сера окисляется до серной кислоты:

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Соединения железа (III) также окисляют сероводород:

H2S + 2FeCl3 → 2FeCl2 + S + 2HCl

Бихроматы, хроматы и прочие окислители также окисляют сероводород до молекулярной серы:

Серная кислота окисляет сероводород либо до молекулярной серы:

Либо до оксида серы (IV):

4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов : меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

Источник

Сера. Сероводород

Сера принадлежит к числу веществ, известных человечеству испокон веков. Ещё древние греки и римляне нашли ей разнообразное применение. Куски самородной серы использовались для совершения обряда изгнания злых духов. Так, по легенде, Одиссей, возвратившись в родной дом после долгих странствий, первым делом велел окурить его серой. Много упоминаний об этом веществе встречается в Библии.

С чем реагирует сероводородная кислота. Смотреть фото С чем реагирует сероводородная кислота. Смотреть картинку С чем реагирует сероводородная кислота. Картинка про С чем реагирует сероводородная кислота. Фото С чем реагирует сероводородная кислотаКристаллы природной серы

В наши дни сера используется как сырьё для производства серной кислоты, пороха, при вулканизации каучука, в органическом синтезе, а также для борьбы с вредителями сельского хозяйства. Порошок серы применяют в медицине в качестве наружного дезинфицирующего средства.

Сера образует несколько аллотропных модификаций. Устойчивая при комнатной температуре ромбическая сера представляет собой жёлтый порошок, нерастворимый в воде. При кристаллизации из хлороформа CHCl3 или из сероуглерода CS2 она выделяется в виде прозрачных кристаллов октаэдрической формы. ромбическая сера состоит из циклических молекул S8, имеющих форму короны. При 113 о С она плавится, превращаясь в жёлтую легкоподвижную жидкость. При дальнейшем нагревании расплав загустевает, так как в нем образуются цепочки. А если нагреть серу до 445 о С, она закипает. Выливая кипящую серу струйкой в холодную воду, можно получить пластическую серу – резиноподобную модификацию, состоящую из полимерных цепочек. При медленном охлаждении расплава образуются игольчатые кристаллы моноклинной серы (tпл = 119 о С). Подобно ромбической сере, эта модификация состоит из молекул S8. При комнатной температуре пластическая и моноклинная сера неустойчивы и самопроизвольно превращаются в порошок ромбической серы.

Нахождение в природе

В природе сера находится как в свободном состоянии, так и в виде соединений. Важнейшие из них следующие: FeS2 – пирит; или железный (серный) колчедан, CuS – медный блеск, Ag2S – серебряный блеск, PbS – свинцовый блеск. Сера часто встречается в виде сульфатов: гипса – CaSO4 ∙2H2O; мирабилита, или глауберовой соли Na2SO4∙10H2O; горькой (английской) соли MgSO4 ∙ 7H2O и др. Сера входит в состав нефти, каменного угля, содержится в растительных и животных организмах (в составе белков).

Получение

Серу, содержащуюся в свободном состоянии (в виде включений) в горных породах, выплавляют из них в специальных аппаратах – автоклавах.

В лабораторных условиях свободную серу можно получить, например, при сливании растворов сероводородной и сернистой кислот, при неполном сгорании сероводорода:

Химические свойства серы

Сера – типичный активный неметалл. Она реагирует с простыми и сложными веществами. В химических реакциях сера может быть как окислителем, так и восстановителем. Это зависит от окислительно-восстановительных свойств веществ, с которыми она реагирует. Сера проявляет свойства окислителя при взаимодействии с простыми веществами – восстановителями (металлами, водородом, некоторыми неметаллами имеющими меньшую ЭО). Восстановителем сера является по отношению к более сильным окислителям (кислороду, галогенам и кислотам – окислителям).

Взаимодействие серы с простыми веществами

С чем реагирует сероводородная кислота. Смотреть фото С чем реагирует сероводородная кислота. Смотреть картинку С чем реагирует сероводородная кислота. Картинка про С чем реагирует сероводородная кислота. Фото С чем реагирует сероводородная кислотаВзаимодействие серы с цинком

Сера реагирует как окислитель:

Источник

Сероводород. Свойства сероводорода.

Сероводород (H2S) – очень канцерогенный, токсичный газ. Имеет резкий характерный запах тухлых яиц.

Получение сероводорода.

1. В лаборатории H2S получают в ходе реакции между сульфидами и разбавленными кислотами:

2. Взаимодействие Al2S3 с холодной водой (образующийся сероводород более чистый, чем при первом способе получения):

Химические свойства сероводорода.

Сероводород H2S – ковалентное соединение, не образующее водородных связей, как молекула Н2О. (Разница в том, что атом серы больший по размеру и более электроотрицательный, чем атом кислорода. Поэтому плотность заряда у серы меньше. И из-за отсутствия водородных связей температура кипения у H2S выше, чем у кислорода. Также H2S плохо растворим в воде, что также указывает на отсутствие водородных связей).

2. Сероводород H2S – очень слабая кислота, в растворе ступенчато диссоциирует:

3. Взаимодействует с сильными окислителями:

4. Реагирует с основаниями, основными оксидами и солями, при этом образуя кислые и средние соли (гидросульфиды и сульфиды):

Эту реакцию используют для обнаружения сероводорода или сульфид-ионов. PbS – осадок черного цвета.

Источник

Урок №12. Сероводород. Сульфиды

Повторите тему 9 класса:

ПОЛУЧЕНИЕ СЕРОВОДОРОДА

Сероводород – токсичный бесцветный газ с запахом тухлых яиц.

Сероводород (H 2 S) в лаборатории можно получить нагреванием смеси парафина с серой.

Выделяющийся сероводород можно обнаружить с помощью влажной универсальной индикаторной бумаги: под действием сероводорода она краснеет. При добавлении сульфата меди к сероводородной воде выпадает черный осадок сульфида меди

CuSO 4 + H 2 S = CuS↓+ H 2 SO 4

По черному осадку сульфида свинца можно обнаружить сульфид-ион.

Сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

FeS (тв.) + 2HCl = FeCl 2 + H 2 S↑

FeS (тв.) + H 2 SO 4 = FeSO 4 + H 2 S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

H 2 + S ↔ H 2 S↑ + 20,92 кДж

Выход H 2 S мал, т.к. обратимая реакция обратима

Наиболее чистый сероводород можно получить при гидролизе сульфида алюминия

Al 2 S 3 (тв.) + 6H 2 O (ж.) = холод = 2Al(OH) 3 ↓ + 3H 2 S↑

Сероводород можно получить в других реакциях:

8Na + 5H 2 SO 4 (конц.) = 4Na 2 SO 4 + H 2 S↑ + 4H 2 O

8HI + H 2 SO 4 (конц.) = 4I 2 + H 2 S↑ + 4H 2 O

ХИМИЧЕСКИЕ СВОЙСТВА СЕРОВОДОРОДА

Изменяет окраску индикаторов на красную – кислая среда.

2) Взаимодействие с растворами оснований. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

H 2 S + 2KOH = K 2 S + 2H 2 O

H 2 S (избыток) + KOH = KHS + H 2 O

3) С растворами солей тяжёлых металлов (Cu, Pb, Ni, Cd, Zn):

H 2 S + CuSO 4 = CuS↓ + H 2 SO 4

CuS осадок чёрного цвета

Сульфиды тяжёлых металлов окрашены: PbS; CuS; NiS – чёрные. СdS – жёлтый. ZnS – белый.

Сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:

H 2 S + Pb(NO 3 ) 2 = PbS + 2HNO 3

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Сероводород – восстановитель

1) При недостатке кислорода и в растворе H 2 S окисляется до свободной серы (раствор мутнеет):

2H 2 S + O 2 (нед.) = 2S↓ +2H 2 O

В избытке кислорода:

2H 2 S + 3O 2 (изб.) = 2SO 2 ↑ + 2H 2 O

2) Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Бром и хлор окисляют сероводород до молекулярной серы:

H 2 S + Cl 2 = 2HCl + S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

H 2 S + 4Cl 2 + 4H 2 O → H 2 SO 4 + 8HCl

Азотная кислота окисляет сероводород до молекулярной серы:

H 2 S + 2HNO 3(конц.) = S + 2NO 2 + 2H 2 O

При кипячении сера окисляется до серной кислоты:

H 2 S + 8HNO 3(конц.) = H 2 SO 4 + 8NO 2 + 4H 2 O

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Оксид серы (IV) окисляет сероводород:

2H 2 S + SO 2 = 3S + 2H 2 O

Соединения железа (III) также окисляют сероводород:

H 2 S + 2FeCl 3 = 2FeCl 2 + S + 2HCl

Бихроматы, хроматы и прочие окислители также окисляют сероводород до молекулярной серы:

3H 2 S + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3S + Cr 2 (SO 4 ) 3 + K 2 SO 4 + 7H 2 O

2H 2 S + 4Ag + O 2 = 2Ag 2 S + 2H 2 O

Интересно! Серебряные и медные монеты чернеют на воздухе и в воде, если в среде содержится сероводород:

Серная кислота окисляет сероводород либо до молекулярной серы:

H 2 S + H 2 SO 4(конц.) = S + SO 2 + 2H 2 O

Либо до оксида серы (IV):

H 2 S + 3H 2 SO 4(конц.) = 4SO 2 + 4H 2 O

СУЛЬФИДЫ

Сульфиды – это бинарные соединения серы и металлов или некоторых неметаллов, соли сероводородной кислоты.

По растворимости в воде и кислотах сульфиды разделяют на растворимые в воде, нерастворимые в воде, но растворимые в минеральных кислотах, нерастворимые ни в воде, ни в минеральных кислотах, гидролизуемые водой.

Чёрные сульфиды (CuS, HgS, PbS, Ag 2 S, NiS, CoS)

Белые и цветные сульфиды (ZnS, MnS, FeS, CdS)

ПОЛУЧЕНИЕ СУЛЬФИДОВ

2) Растворимые сульфиды можно получить при взаимодействии сероводорода и щелочей

H 2 S + 2KOH = K 2 S + 2H 2 O

3) Нерастворимые сульфиды получают взаимодействием растворимых сульфидов с солями или взаимодействием сероводорода с солями (только черные сульфиды)

Pb(NO 3 ) 2 + Н 2 S = 2НNO 3 + PbS

ZnSO 4 + Na 2 S = Na 2 SO 4 + ZnS

ХИМИЧЕСКИЕ СВОЙСТВА СУЛЬФИДОВ

1) Гидролиз. Растворимые сульфиды гидролизуются по аниону, среда водных растворов сульфидов щелочная:

Na 2 S+H 2 O↔NaHS+NaOH;

2) С растворами кислот. Сульфиды металлов, расположенных в ряду напряжений левее железа (включительно), растворяются в сильных минеральных кислотах.

CaS + 2HCl = CaCl 2 + H 2 S↑

3) С концентрированными кислотами. Нерастворимые сульфиды растворяются в концентрированной азотной кислоте или концентрированной серной кислоте. При этом сера окисляется либо до простого вещества, либо до сульфата.

CuS + 8HNO 3 = CuSO 4 + 8NO 2 + 4H 2 O

или горячей концентрированной серной кислоте:

CuS + 4H 2 SO 4(конц. гор.) = CuSO 4 + 4SO 2 + 4H 2 O

4) Сульфиды проявляют восстановительные свойства и окисляются пероксидом водорода, хлором и другими окислителями.

Сульфид свинца (II) окисляется пероксидом водорода до сульфата свинца (II):

PbS + 4H 2 O 2 = PbSO 4 + 4H 2 O

Сульфид меди (II) окисляется хлором:

СuS + Cl 2 = CuCl 2 + S

5) Обжиг сульфидов. При этом образуются оксиды металла и серы (IV).

2CuS + 3O 2 = 2CuO + 2SO 2

2Cr 2 S 3 + 9O 2 = 2Cr 2 O 3 + 6SO 2

2ZnS + 3O 2 = 2SO 2 + ZnO

6) Реакции сульфидов с растворимыми солями свинца, серебра, меди используют как качественные на ион S 2−

Сульфиды свинца, серебра и меди — черные осадки, нерастворимые в воде и минеральных кислотах:

Na 2 S + Pb(NO 3 ) 2 = PbS↓ + 2NaNO 3

Na 2 S + 2AgNO 3 = Ag 2 S↓ + 2NaNO 3

Na 2 S + Cu(NO 3 ) 2 = CuS↓ + 2NaNO 3

7) Необратимый гидролиз

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 + 3H 2 S

Разложение происходит и при взаимодействии солей трехвалентных металлов с сульфидами щелочных металлов.

3Na 2 S + 2AlCl 3 + 6H 2 O = 2Al(OH) 3 + 3H 2 S + 6NaCl

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *