рефрактор в астрономии что такое
Какой телескоп-рефрактор лучше: обзор магазина «Четыре глаза»
Выбрать хороший рефрактор не так уж и сложно, как это может показаться на первый взгляд. Неверно задаваться вопросом «какой рефрактор лучше?», важно выяснить – чем различаются рефракторы между собой и какие из них для каких целей подходят.
Оптическая схема «рефрактор» (линзовый телескоп) – самая первая и одна из самых распространенных оптических схем телескопов. Первый рефрактор был сконструирован еще в XVII веке и пользуется большой популярностью у начинающих и продвинутых астрономов по сей день.
Конструкция такого телескопа довольно проста: свет собирается при помощи двух линз. Первая (объектив) – выпуклая – собирает свет и фокусирует его на определенном расстоянии внутри трубы; вторая (окуляр) – вогнутая – превращает сходящийся пучок световых лучей обратно в параллельный. В окуляре мы видим прямое неперевернутое изображение, однако зачастую оно омрачено хроматическими аберрациям (ложной окраской по контуру объектов и деталей). С хроматизмом можно бороться при помощи дополнительных линз – в оптическую схему добавляются собирающие и рассеивающие линзы из разных сортов стекла. Телескопы таких конструкций называются «ахроматическими» и «апохроматическими рефракторами» и передают более качественное неискаженное изображение. Эти более дорогостоящие модели популярны среди продвинутых астрономов и астрофотографов.
Линзовые телескопы-рефракторы, как и телескопы других схем, имеют свои преимущества и недостатки. Для того чтобы понять, какая схема телескопа подходит именно вам, необходимо принять во внимание множество факторов. Например, вам нужно определиться с местом и объектами наблюдений, бюджетом, желаемыми размерами и возможностями прибора и т. д. Ниже приведены основные плюсы и минусы телескопов-рефракторов.
Достоинства телескопов-рефракторов:
Недостатки телескопов-рефракторов:
Обзор телескопов-рефракторов
Рефракторы начального уровня
Хороший рефрактор начального уровня является, пожалуй, идеальным инструментом для тех, кто только начинает знакомство с космосом и астрономией. Для изучения ближайших к нам небесных объектов, Луны и планет Солнечной системы, линзовые телескопы подходят как нельзя лучше. Как было рассмотрено выше, вам не нужно беспокоиться о настройке оптики и специальном уходе за прибором. Рефракторы с апертурой от 50 до 100 мм будут довольно легкими и мобильными, их без труда можно взять с собой на природу или разместить на балконе в городской квартире.
Надежность, простота в использовании и небольшие габариты телескопа-рефрактора начального уровня позволяют пользоваться им не только взрослым, но и детям и подросткам.
Настольные телескопы-рефракторы
Еще один важный вопрос, на который необходимо ответить перед покупкой, – насколько вам важны габариты и конструкция монтировки телескопа. Если вы выбираете компактный и мобильный телескоп, обратите внимание на настольные модели.
Это небольшие рефракторы для начальных астрономических и наземных наблюдений. Такие телескопы устанавливаются на очень простые монтировки, с управлением которыми справится даже ребенок. Разобрать и собрать настольный телескоп-рефрактор не составит никакого труда: просто установите трубу с монтировкой на настольную треногу и приступайте к наблюдениям.
Чаще всего настольные телескопы комплектуются альтазимутальными монтировками, реже – экваториальными. Речь о типах монтировок пойдет ниже.
Телескопы-рефракторы на альтазимутальных монтировках
Главное преимущество альтазимутальной (азимутальной) монтировки – простота в использовании. Такая монтировка не требует выравнивания или специальной настройки. Принцип действия монтировки похож на работу фотоштатива: с ее помощью вы можете двигать оптическую трубу телескопа по двум осям – по высоте (по вертикали) и по азимуту (по горизонтали). Управление осуществляется при помощи одной или двух ручек в зависимости от модели. Азимутальные монтировки бывают разных типов: для компактных рефракторов и рефлекторов, для крупных 200–500-миллиметровых рефлекторов (монтировки Добсона), для большеапертурных катадиоптриков (вилочные монтировки). Кроме того, монтировки могут иметь ручное или компьютерное управление.
Альтазимутальные монтировки лучше всего подходят для визуальных наблюдений объектов ближнего космоса и наземных объектов, а также для фотографирования ярких астрономических объектов на коротких выдержках.
Труба небольшого телескопа-рефрактора в сочетании с азимутальной монтировкой – отличный инструмент для знакомства с устройством телескопа и первых прогулок по космосу и наземных наблюдений в дневное время. Никаких длительных приготовлений и сложной сборки – просто выберите подходящий для наблюдений день, возьмите свой телескоп и наслаждайтесь исследованиями макромира.
Телескопы-рефракторы на экваториальных монтировках
Тем, у кого уже есть опыт общения с телескопами, можно порекомендовать рефрактор на экваториальной монтировке. Экваториальная монтировка имеет более сложную конструкцию и отличается более точным ведением космического объекта. У такой монтировки есть специальные шкалы и две оси вращения – прямое восхождение (RA) и склонение (DEC).
Перед началом каждого наблюдения нужно настроить монтировку:
Управление трубой телескопа происходит при помощи ручек тонких движений, обеспечивающих плавное и точное ведение объекта. Часто экваториальную монтировку дополняют электроприводами, которые самостоятельно поворачивают трубу, компенсируя суточное вращение звездного неба.
Экваториальные монтировки различаются размерами. Для небольших рефракторов подходят компактные монтировки EQ1 и EQ2, а для крупных приборов с большими объективами – уже более мощные EQ3 и EQ5.
Телескопы-рефракторы для астрофотографии
Астрофотография действительно может стать увлекательным и необычным хобби на всю жизнь! Если вы планируете попробовать свои силы на этом поприще, обратите внимание на три составляющие: оптическую схему телескопа, монтировку и, конечно же, камеру для съемки.
Пожалуй, самое главное условия получения красивых снимков – качественная монтировка. Рекомендуется использовать жесткие экваториальные монтировки, оснащенные электроприводами осей, – они способны обеспечить очень точное ведение объекта, необходимое при съемке на длинных выдержках.
Для съемки Луны и планет хорошо подойдут ахроматические рефракторы. Если же вы планируете снимать объекты дальнего космоса (туманности, звездные скопления, галактики), вам потребуются дорогостоящие рефракторы-апохроматы, способные свести аберрации к минимуму.
Для фотосъемки можно использовать зеркальную фотокамеру или специальную камеру для телескопов. Специальные камеры для телескопов, как правило, комплектуются особым программным обеспечением для работы с астрофотографиями.
Обратите внимание, что для подключения зеркальной камеры к телескопу вам могут потребоваться дополнительные аксессуары: Т-кольцо, Т-переходник, удлинитель и др. в зависимости от модели камеры и телескопа.
Подводя итоги
Небольшие хорошие телескопы-рефракторы можно смело рекомендовать начинающим астрономам всех возрастов. Они компактны, удобны в сборке, не требуют дополнительной настройки и при качественной оптике дают хорошие результаты при наблюдении объектов ближнего космоса и наземных объектов.
Ахроматические и апохроматические рефракторы станут отличным выбором для тех, кто готов к покупке дорогостоящего оборудования для занятия астрофото. Эти инструменты способны передавать изображения, лишенные хроматических и других аберраций.
Конечно же, выбор оптического оборудования – задача непростая. На нашем сайте размещено большое количество отзывов о рефракторах, обзоров и статей, посвященных астрономии, телескопам и оптическим аксессуарам. Надеемся, они окажутся полезными и познавательными для вас. А если у вас есть вопросы, которые мы пока еще не охватили, пожалуйста, напишите нам.
Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.
Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.
Другие обзоры и статьи о телескопах и астрономии:
Обзоры оптической техники и аксессуаров:
Статьи о телескопах. Как выбрать, настроить и провести первые наблюдения:
Все об основах астрономии и «космических» объектах:
Как выбрать телескоп рефрактор? Особенности линзовых телескопов Leave a comment
Как выбрать телескоп рефрактор? Если Вы задаетесь таким вопросом, значит скорей всего уже знаете, что телескопы бывают трех типов: зеркальные (рефлекторы), линзовые (рефракторы) и зеркально-линзовые (катадиоптрики). Телескоп рефрактор – оптический прибор, объектив которого состоит из линз (двух, трех и может быть даже пяти!). В настоящее время оптическая схема – рефрактор, наиболее популярна при массовом производстве оптических приборов любительского класса – это телескопы и зрительные трубы.
Телескоп рефрактор в разрезе
Телескоп рефрактор имеет ряд преимуществ:
Недостатки рефрактора (или его особенности):
Так как же выбрать телескоп рефрактор и стоит ли рассматривать его для любителя астрономии
Еще раз, немного истории и очевидных плюсов для новичка
Линзовые телескопы – практически идеальный вариант для начинающих астрономов любителей, особенно детского возраста. За счет своей оптической схемы у рефракторов всегда закрытая труба и это большой плюс – вся пыль и грязь не будет так глобально накапливаться, как у любого телескопа Ньютона. Далее – очень быстрая термостабилизация телескопа – вынесли на улицу или балкон и уже очень скоро можно приступать к работе (конечно зимой это время может быть несколько больше). А вот зеркально-линзовые приборы могут термостабилизроваться часами! И одно из самых больших преимуществ, которые есть также и благодаря вышеперечисленным – это простота эксплуатации, неприхотливость, большая эффективность, особенно для начинающих и тем более ребенка. Не забываем и про ориентацию изображения – как минимум оно прямое, но зеркальное, а при наличии комплектной или отдельной оборачивающей призмы – полностью прямое классическое, как у зрительной трубы.
Телескопы Галилео Галилея и зарисовки Луны
И вобще самые первые телескопы – были линзовыми. Галилео Галилей использовал собственноручно созданные рефракторы с диаметром линз от 37 до 58 мм. При этом ему приходилось эти линзы значительно диафрагмировать, чтобы улучшить качество изображений (ведь объективы в ту пору были только из одиночной линзы с сильнейшими аберациями). Это не помешало Галилео Галилею сделать впечатляющие открытия. Сегодняшние современные массовые линзовые телескопы по качеству картинки выигрывают во много раз и даже сравнивать их сложно по сравнению с теми первыми телескопами!
Море Влажности и кратер Гассенди в телескоп рефрактор с ахроматическим объективом в 120 мм. Фокусное расстояние 600 мм (f/5)
А еще Вам не придется юстировать объектив телескопа или его соосность с оптической осью (крайне редкая процедура и если такое встречается, то скорей всего у профессиональных моделей), что, в принципе, разумно для начинающих любителей астрономии. Большинство рефракторных телескопов начального уровня строят достойное качество изображения, даже несмотря на присутствие остаточной хроматической аберрации. Она есть, но это не то, что превращает телескоп в непригодный или низкокачественный продукт. Скорей всего Вы и не поймете ничего, подумаете, что это так и надо, например, немного синеватый лимб на краю диска Луны.
Какими бывают телескопы рефракторы?
Классические двухлинзовые рефракторы
Телескоп рефрактор может быть двух-линзовым (классическая схема) из двух сортов стекла – флингласса и кронгласса. Такие схемы используются в большинстве телескопов начального и среднего класса. При визуальных и фотографических наблюдениях заметна остаточная хроматическая абберация. Чтобы минимизировать влияние данной аберрации, фокусное расстояние должно быть как можно больше, но это влечет за собой и увеличение габаритов самой трубы. Наиболее распространенной характеристикой большинства массовых рефракторов – это относительное отверстие 1:10 (соотношение диаметра объектива к фокусному расстоянию – (D/f)), или так называемая светосила – f/10. Т.е. если диаметр объектива 90 мм и фокусное расстояние 900 мм, получается относительное отверстие 1:10 или светосила f/10. Такой телескоп вполне подходит для большинства любительских наблюдений как первый оптический прибор.
Светосильные рефракторы-ахроматы. Производители выпускают светосильные телескопы рефракторы, например f/5 или f/6 с диаметрами объективов 70 мм, 80 мм, 90 мм, 100 мм и 120 мм. С одной стороны это спорные телескопы, т.к. у них более явно выражен хроматизм, о котором мы здесь постоянно упоминаем. Но, с другой стороны, у таких телескопов есть и свои особые плюсы, которые могут перевесить на чаше выбора телескопа и минусы. Поэтому, если Вы все еще задаетесь вопросом о том, как выбрать телескоп рефрактор, обратите внимание и на короткофокусники. А вдруг это то, что Вам нужно?
Мы не исключаем, что многие из Вас в поисках информации изучили “черные списки телескопов” на других сайтах, но, вдруг, невзирая на все это вы выберете такой прибор:
Из других особенностей можно выделить:
Вот пример, наш снимок в светосильный рефрактор 120 мм с фокусным расстоянием 600 мм:
На снимке явно виден цвет Луны, которого на самом деле нет. Это и есть влияние хроматической абберации на качество изображения.
Тот же снимок Луны после несложной обработки в графическом редакторе. Снимок получен в условиях города с балкона.
А вот еще один пример, участок звездного неба в этот же 120 мм рефрактор. Ярко выражен синий ореол вокруг центральной яркой звезды и зеленоватый оттенок у более слабых звезд. Т.е. фактически видны псевдоцвета небесных объектов, учитывая, что яркая центральная звезда на снимке – Бетельгейзе, должна быть ярко-красно-оранжевого цвета.
Рефрактор
Рефрактором (или линзовым телескопом) называют оптический телескоп, который использует для фокусировки света одну или несколько линз. Таким образом, главным принципом работы данного оптического прибора становится явление преломления.
В отличие от зеркал, использующихся в рефлекторах, в рефракторах линзы изначально зафиксированы в своем положении производителем, поэтому они не нуждаются в дополнительной юстировке. Кроме того, в конструкцию данных телескопов не входит центральное экранирование, которое в рефлекторах влечет за собой уменьшение контрастности изображение (из-за уменьшения количества поступающего света). Наконец, закрытая труба рефрактора (в отличие от трубы рефлектора) защищает линзы от пыли и влаги.
Телескоп Галилея. В конструкцию рефрактора Галилея входит одна собирающая и одна рассеивающая линза, которая выступает в качестве окуляра. В результате телескоп дает неперевернутое изображение. Это самый простой тип рефрактора, изображение в котором страдает из-за хроматической аберрации. Примером подобного рефрактора является театральный бинокль.
Рефрактор Кеплера. В конструкцию данного телескопа входят две собирающие линзы, в результате чего данная оптическая система дает перевернутое изображение. Достоинством данного рефрактора стало более широкое поле зрения, однако изображение по-прежнему страдает из-за сильной хроматической аберрации.
Ахроматический рефрактор. Новая оптическая схема с ахроматическим объективом позволила значительно снизить хроматическую аберрацию. Ахроматический телескоп включает в себя собирающую и рассеивающую линзы, которые изготавливаются из стекол с разными коэффициентами преломления. Сейчас данная схема используется в большинстве любительских рефракторов. Наиболее известными схема ахроматических рефракторов являются телескопы Литтрова, Кларка, Фраунгофера.
Апохроматический рефрактор. Данный телескоп включает в себя уже три линзы с тщательно подобранными показателями преломления. Апохроматическую оптическую систему предложил в 18 веке французский математик А. К. Клеро, который первый рассчитал параметры и радиусы кривизны линз ахроматического объектива телескопа без хроматической аберрации. Для того чтобы исправить хроматическую аберрацию у объектива стали использовать флюоритовую оптику. В 90х годах 20ого века линзы начинают изготавливать из специальных сортов стекла со сверхнизкой дисперсией, характеристики которого весьма близки к флюориту. Данная оптическая схема гарантирует почти полное избавление от хроматической аберрации, большую светосилу, и как результат, прекрасное качество изображение.
Автор статьи:
Галетич Юлия
Дата публикации: 17.12.2010
Перепечатка без активной ссылки запрещена
Вы можете приложить к своему отзыву картинки.
Телескоп-рефрактор
Инструменты Народной обсерватории в Белграде. На переднем плане рефрактор Zeiss-110/2000
История изобретения
Первый телескоп-рефрактор был сконструирован в 1609 году Галилеем. Галилей, основываясь на слухах об изобретении голландцами зрительной трубы, разгадал её устройство и изготовил образец, который впервые использовал для астрономических наблюдений. Первый телескоп Галилея имел апертуру 4 сантиметра, фокусное расстояние около 50 сантиметров и степень увеличения 3x. Второй телескоп имел апертуру 4,5 сантиметра, фокусное расстояние 125 сантиметров, степень увеличения 34х. Все телескопы Галилея были весьма несовершенны, но несмотря на это, в течение двух первых лет наблюдений ему удалось обнаружить четыре спутника планеты Юпитер, фазы Венеры, пятна на Солнце, горы на поверхности Луны (дополнительно была измерена их высота), наличие у диска Сатурна придатков в двух противоположных точках (природу этого явления Галилей разгадать не смог).
Устройство
Телескоп-рефрактор содержит два основных узла: линзовый объектив и окуляр. Объектив создаёт действительное уменьшенное обратное изображение бесконечно удалённого предмета в фокальной плоскости. Это изображение рассматривается в окуляр как в лупу. В силу того, что каждая отдельно взятая линза обладает различными аберрациями (хроматической, сферической и проч.), обычно используются сложные ахроматические и апохроматические объективы. Такие объективы представляют собой выпуклые и вогнутые линзы, составленные и склеенные с тем, чтобы минимизировать аберрации.
Телескоп Галилея
Телескоп Галилея имел в качестве объектива одну собирающую линзу, а окуляром служила рассеивающая линза. Такая оптическая схема даёт неперевернутое (земное) изображение. Главными недостатками галилеевского телескопа являются очень малое поле зрения и сильная хроматическая аберрация. Такая система все ещё используется в театральных биноклях, и иногда в самодельных любительских телескопах.
Схема рефрактора Галилея
Телескоп Кеплера
Иоганн Кеплер в 1611 г. усовершенствовал телескоп, заменив рассеивающую линзу в окуляре собирающей. Это позволило увеличить поле зрения и вынос зрачка, однако система Кеплера даёт перевёрнутое изображение. Преимуществом трубы Кеплера является также и то, что в ней имеется действительное промежуточное изображение, в плоскость которого можно поместить измерительную шкалу. По сути, все последующие телескопы-рефракторы являются трубами Кеплера. К недостаткам системы относится сильная хроматическая аберрация, которую до создания ахроматического объектива устраняли путём уменьшения относительного отверстия телескопа.
Схема рефрактора Кеплера
Ахромат
Телескоп-рефрактор с ахроматическим объективом, как правило — двухлинзовым (дублет). Наиболее широко распространённый в прошлом и в настоящее время тип телескопов-рефракторов. Существует несколько разновидностей ахроматических объективов, применяемых в телескопах-рефракторах, в частности, дублеты Литтрова, Кларка, Фраунгофера (последний нашёл наибольшее применение.)
Апохромат
Телескоп-рефрактор с апохроматическим объективом, оптические аберрации которого, в первую очередь хроматическая, исправлены значительно лучше, чем в ахромате. Как правило, в объективе используются элементы из стекла со сверхнизкой дисперсией или флюорит. Объектив — двух- или трёхлинзовый. По сравнению с ахроматами апохроматы могут иметь большую светосилу и значительно превосходят ахроматы по качеству изображения. Появление апохроматических рефракторов в астрономической оптике можно отнести ко 2й половине 20-го века, долгое время их распространение сдерживала высокая стоимость флюоритовой оптики или специальных стёкол. С 1990-х годов, благодаря широкому внедрению в оптической промышленности стёкол со сверхнизкой дисперсией, по своим характеристикам близких к флюориту, апохроматические рефракторы стали значительно более доступны и популярны, в том числе и в любительской астрономии.
Современные рефракторы
Самый большой рефрактор мира принадлежит Йеркской обсерватории (США) и имеет диаметр объектива 102 см. Более крупные рефракторы не используются. Это связано с тем, что качественные большие линзы дороги в производстве и крайне тяжелы, что ведёт к деформации и ухудшению качества изображения. Крупные телескопы обычно являются рефлекторами.
Крупнейшие рефракторы
Местонахождение и апертура самых известных телескопов-рефракторов
Галерея
76-см рефрактор Обсерватории Ниццы
102-см телескоп-рефрактор Йеркской обсерватории. Снимок 2006 года
68-см рефрактор Обсерватории Венского университета
Большой рефрактор Обсерватория Архенхольда в Берлине