почему температурный фактор так важен для живых существ

Биология. 10 класс

§ 6. Температура как экологический фактор. Пойкилотермные и гомойотермные организмы

*Температура как абиотический фактор среды

В природе температура непостоянна. На суше она является одним из важных лимитирующих факторов среды. Влияние температуры на большинство организмов проявляется в регулировании биохимических и физиологических процессов жизнедеятельности. При сильном понижении температуры осуществление жизненных функций организма становится невозможным из-за резкого замедления обмена веществ. При повышении температуры скорость обменных процессов повышается до достижения определенной температуры, при высоких температурах (выше 45 °C) обмен веществ прекращается, и наступает гибель организма. Температура может также влиять на характер поведения, географическое распределение организмов. Для температурного фактора характерны широкие географические, сезонные и суточные колебания. Пределами выносливости для любого вида являются температуры, которые приводят к необратимому нарушению процессов жизнедеятельности. Диапазон переносимых температур у разных видов сильно варьирует. Например, споры ряда микроорганизмов выдерживают охлаждение до –200 °C. Большинство вегетативных форм прокариот погибает при температуре +60 °C. Однако имеются термофильные бактерии, для которых минимальная температурная граница роста равна +60 °C, а максимальная — до +110 °C (так называемые экстремальные термофилы из гидротермальных источников на дне океанов). Для большинства эукариот верхняя граница температурного диапазона, как правило, не выходит за пределы +50 °C.

Диапазон колебаний температуры в воде значительно меньше, чем на суше, соответственно и пределы выносливости по отношению к колебаниям температуры у водных организмов ýже, чем у наземных. Однако, как для водных, так и для наземных обитателей наиболее оптимальной является положительная температура преимущественно в пределах 15—40 °C.

Источник

§ 6. Температура как экологический фактор. Пойкилотермные и гомойотермные организмы

Сайт:Профильное обучение
Курс:Биология. 10 класс
Книга:§ 6. Температура как экологический фактор. Пойкилотермные и гомойотермные организмы
Напечатано::Гость
Дата:Пятница, 12 Ноябрь 2021, 21:31

Оглавление

*Температура как абиотический фактор среды

В природе температура непостоянна. На суше она является одним из важных лимитирующих факторов среды. Влияние температуры на большинство организмов проявляется в регулировании биохимических и физиологических процессов жизнедеятельности. При сильном понижении температуры осуществление жизненных функций организма становится невозможным из-за резкого замедления обмена веществ. При повышении температуры скорость обменных процессов повышается до достижения определенной температуры, при высоких температурах (выше 45 °C) обмен веществ прекращается, и наступает гибель организма. Температура может также влиять на характер поведения, географическое распределение организмов. Для температурного фактора характерны широкие географические, сезонные и суточные колебания. Пределами выносливости для любого вида являются температуры, которые приводят к необратимому нарушению процессов жизнедеятельности. Диапазон переносимых температур у разных видов сильно варьирует. Например, споры ряда микроорганизмов выдерживают охлаждение до –200 °C. Большинство вегетативных форм прокариот погибает при температуре +60 °C. Однако имеются термофильные бактерии, для которых минимальная температурная граница роста равна +60 °C, а максимальная — до +110 °C (так называемые экстремальные термофилы из гидротермальных источников на дне океанов). Для большинства эукариот верхняя граница температурного диапазона, как правило, не выходит за пределы +50 °C.

Диапазон колебаний температуры в воде значительно меньше, чем на суше, соответственно и пределы выносливости по отношению к колебаниям температуры у водных организмов ýже, чем у наземных. Однако, как для водных, так и для наземных обитателей наиболее оптимальной является положительная температура преимущественно в пределах 15—40 °C.

*Пойкилотермные и гомойотермные организмы

По способности регулировать температуру тела при изменении температуры внешней среды организмы разделяют на две группы: пойкилотермные и гомойотермные.

В условиях пониженной температуры среды обитания пойкилотермные организмы впадают в состояние анабиоза, характеризующееся отсутствием активности и минимальной интенсивностью обменных процессов. Тем не менее такие организмы обладают способностью противодействовать сдвигам температуры тела при колебаниях температуры окружающей среды. В основном это может достигаться за счет целенаправленного избегания воздействия более высоких или более низких температур путем выбора (если есть возможность) более холодной или более теплой среды. Например, змеи выползают на прогретые скалы, ящерицы — на стволы деревьев с солнечной стороны, лягушки — на теплые камни, листья. Для многих организмов характерно проявление активности или принятие определенной позы в зависимости от времени суток.

У насекомых во время полета за счет работы крыльев генерируется энергия, и температура тела может быть на 15—20 °С выше температуры окружающей среды. А у шмелей в горах на Кавказе было отмечено повышение температуры тела до 38—40 °C при температуре воздуха 4—8 °C. Общественные насекомые образуют скопления (муравейники, термитники), внутри которых может поддерживаться температура, значительно превышающая температуру окружающей среды.

Гомойотермными (от греч. hómoios — подобный и thérmē — тепло) называются организмы, способные поддерживать относительно постоянную температуру тела даже при существенных изменениях температуры внешней среды.

У гомойотермных животных чрезвычайно высокая сопротивляемость перегреванию была блестяще продемонстрирована около двухсот лет назад в опыте доктора Ч. Блэгдена в Англии. Вместе с несколькими друзьями и собакой он провел 45 мин в сухой камере при температуре +126 °C без последствий для здоровья. В то же время кусок мяса, взятый в камеру, оказался сваренным, а холодная вода, испарению которой препятствовал слой масла, нагрелась до кипения.

У гомойотермных животных при продвижении с юга на север средние размеры тела увеличиваются ( правило Бергмана ). Например, волк полярный — самый крупный из всех волчьих, медведь белый — из всех медвежьих, росомаха — из всех куньих, лось — из всех парнокопытных, глухарь — из всех тетеревиных. Объясняется это тем, что при увеличении размеров тела поверхность тела относительно его объема уменьшается, что снижает теплоотдачу.

В то же время выступающие части тела (уши, хвосты) у гомойотермных животных при продвижении с юга на север уменьшаются ( правило Аллена ). Например, самый южный и хорошо приспособленный к пустынной жизни представитель семейства псовых — фенек — при длине тела 30—40 см имеет уши длиной 15 см. Тогда как у лисицы, обитающей в умеренном поясе, уши гораздо меньше. И совсем небольшие уши имеет песец, средой обитания которого является тундра. Объясняется это тем, что чем меньше выступающие части тела, тем меньше поверхность тела, через которую уходит тепло. Для северных животных это выгодно, поэтому уши и хвосты у них маленькие. Для южных обитателей, наоборот, удобно иметь большую поверхность выступающих частей тела, чтобы повысить теплоотдачу.

Все ли гомойотермные животные всегда способны поддерживать постоянную температуру тела? Известно, что при резком снижении температуры среды некоторые виды млекопитающих и птиц способны впадать в оцепенение, внешне сходное с холодовым оцепенением пойкилотермных животных. При этом температура их тела значительно снижается и мало отличается от температуры окружающей среды. Нерегулярное оцепенение наблюдается у ласточек, стрижей, колибри, многих грызунов, некоторых сумчатых в связи с резким похолоданием, дождями или снегопадами. Сезонное оцепенение, которое принято называть зимней спячкой, характерно для сурков, сусликов, ежей, белок, летучих мышей, бурых медведей.

Вышеназванные виды птиц и млекопитающих выделяют в отдельную группу гетеротермных животных (от греч. héteros — иной, другой, thérmē — тепло). При благоприятных условиях существования они обладают способностью к изотермии, а при внезапном понижении температуры внешней среды, недостатке пищи и воды эти организмы теряют такую способность и ведут себя как пойкилотермные.

*Повторим главное. Температура может оказывать лимитирующее действие на организмы вследствие влияния на скорость процессов жизнедеятельности. Диапазон переносимых температур у разных видов сильно варьирует. По способности регулировать температуру тела при изменении температуры внешней среды организмы разделяют на пойкилотермных и гомойотермных. У пойкилотермных организмов почти полностью отсутствуют механизмы терморегуляции, и температура тела изменяется одновременно с изменением температуры внешней среды. Гомойотермные организмы способны поддерживать относительно постоянную температуру тела в широком диапазоне изменений температуры среды. Такое явление называется изотермией. Среди гомойотермных существует небольшая группа организмов, которые при резком похолодании не способны к изотермии. Их называют гетеротермными организмами.

Проверим знания

* 1. Почему при продвижении с юга на север у животных увеличиваются размеры выступающих частей тела? Приведите аргументированные доказательства.
* 2. Как известно, слон и бегемот имеют крупные размеры тела, но живут на юге, что противоречит правилу Бергмана. Как это объяснить?

* Индивидуальное домашнее задание. Составьте перечень организмов, обитающих в районе вашего проживания. С помощью литературных источников установите их систематическую принадлежность и разделите на пойкилотермных и гомойотермных.

Источник

Влияние температуры на организмы [Воздействие, абиотический фактор, экологический, Роль жизни]

Температура является одним из важнейших абиотических факторов, оказывающих большое влияние на жизнь, размножение и распространение организмов на Земле.

Растения и большинство животных не могут поддерживать температуру тела на постоянном уровне. Морозостойкость растений связана с повышением количества сахара и концентрации клеточного сока или с уменьшением воды в их клетках.

Теплокровность и холоднокровность

В зависимости от способности поддерживать температуру тела все животные делятся на теплокровных (гомойотермных) и холоднокровных (пойкилотермных).

Холоднокровность

К холоднокровным относятся беспозвоночные, рыбы, земноводные, пресмыкающиеся. Они не могут поддерживать температуру тела на постоянном уровне. Повышение температуры среды ускоряет у них физиологические процессы. Понижение температуры среды ниже определённого уровня приводит к замедлению метаболических процессов и гибели организмов.

Теплокровность

Теплокровные животные в процессе эволюции приспособились к поддержанию постоянной температуры своего тела независимо от изменения температуры окружающей среды. К теплокровным животным относятся птицы и млекопитающие. Температура тела у птиц несколько выше 40°C, а у млекопитающих поддерживается в пределах 37—40°C.

Терморегуляция

Поддержание и постоянство температуры тела

Постоянство температуры тела достигается с помощью двух механизмов.

Химический механизм связан с интенсивностью окислительно­-восстановительных реакций и регулируется центральной нервной системой рефлекторным путём. Появление четырёхкамерного серд­ца, совершенствование системы дыхания имели большое значение в выработке способности поддерживать температуру тела на постоян­ном уровне.

Физические механизмы поддержания постоянной темпе­ратуры связаны с появлением густого шерстяного покрова, оперения, подкожной жировой клетчатки и потовых желез, зарождением механизмов регуляции кровообращения при помощи нервной системы. Материал с сайта http://wikiwhat.ru

Приспособление организмов к изменениям температуры

Миграция — переселение животных в районы с более благоприятной температурой — является одним из механизмов их приспособления к сезонным изменениям температуры внешней среды. Киты, некоторые птицы, рыбы, насекомые и другие животные в течение года мигрируют.

При понижении или резком повышении температуры некоторые виды холоднокровных животных впадают в состояние оцепенения или спячки. Отдельные представители теплокровных животных впадают в спячку при недостатке корма или при понижении температуры среды (медведи, барсуки). При этом у них замедляется обмен веществ, но почти не понижается температура тела.

Одним из способов приспособления микроорганизмов, растений и низших животных к температурным условиям является переход их в состояние анабиоза. При этом микробы образуют споры, а простейшие животные — цисты.

Источник

Температура как экологический фактор для выживания человека

почему температурный фактор так важен для живых существ. Смотреть фото почему температурный фактор так важен для живых существ. Смотреть картинку почему температурный фактор так важен для живых существ. Картинка про почему температурный фактор так важен для живых существ. Фото почему температурный фактор так важен для живых существ

Температура – один из важнейших экологических факторов, от которого зависит выживание на планете, ее формы и виды. Жизнь человека, также, напрямую зависит от температуры окружающей среды. Что же будет, если температура на планете поднимется до критического уровня?

Для начала, разберем, как различная температура воздействует на живой организм.

Все живые организмы подразделяются на несколько видов:

В ходе эволюции все живое вырабатывает механизмы приспособления к условиям обитания. Разберем некоторые из них.

Температура адаптации всего живого подразделяется на три типа:
— Химическая терморегуляция – оптимизация температурных условий организма за счёт изменения скорости протекания химических процессов.
— Физическая терморегуляция – покровы, позволяющие сохранить выработанное тепло в организме (мех, перья, жировая прослойка).
— Поведенческое приспособление – избегание неблагоприятно низкой температуры, сезонные миграции, строительство убежищ, рытьё нор, групповое поведение.

Как видим, человечество, для своего выживания, выбрало последний вариант приспособления. Хотя, мы, как все живые организмы на планете, способны использовать как физическую так и химическую терморегуляцию. Мы называем это несколько по — другому – внутренние резервы человека. Обычно они включаются в экстремальных ситуациях. На сегодняшний день, ситуация на планете складывается не в пользу человека. При наихудшем сценарии единственным способом выжить для человека будет полная трансформация химических процессов в организме.

Источник

4. Важнейшие абиотические факторы и адаптации к ним организмов

4.2. Температура

Тепловой режим — важнейшее условие существования живых организмов, так как все физиологические процессы в них возможны при определенных условиях. Главным источником тепла является солнечное излучение.

Солнечная радиация превращается в экзогенный, находящийся вне организма, источник тепла во всех случаях, когда она падает на организм и им поглощается. Сила и характер воздействия солнечного излучения зависят от географического положения и являются важными факторами, определяющими климат региона. Климат же определяет наличие и обилие видов растений и животных в данной местности. Диапазон существующих во Вселенной температур равен тысячам градусов (табл. 4.3).

Состав атмосферы и температура на планетах

Температурный диапазон активной жизни на Земле, °С

Как правило, эти температуры, при которых возможно нормальное строение и функционирование белков: от 0 до +50°С. Однако целый ряд организмов обладает специализированными ферментными системами и приспособлен к активному существованию при температуре тела, выходящей за названные выше пределы.

Температурный фактор характеризуется ярко выраженными как сезонными, так и суточными колебаниями. В ряде районов Земли это действие фактора имеет важное сигнальное значение в регуляции сроков активности организмов, обеспечении их суточного и сезонного режимов жизни.

При характеристике температурного фактора очень важно учитывать его крайние показатели, продолжительность их действия, повторяемость. Выходящие за пределы терпимости организмов изменения температуры в местах обитания приводят к массовой их гибели. Значение температуры заключается и в том, что она изменяет скорость протекания физико-химических процессов в клетках, отражающихся на всей жизнедеятельности организмов. Температура влияет на анатомо-морфологические особенности организмов, ход физиологических процессов, их рост, развитие, поведение и во многих случаях определяет географическое распространение растений и животных.

У теплолюбивых, или термофилов, жизнедеятельность приурочена к условиям довольно высоких температур (табл. 4.5).

Это преимущественно обитатели жарких, тропических районов Земли. Среди многочисленных беспозвоночных (насекомые, паукообразные, моллюски, черви), холодно- и теплокровных позвоночных имеется много видов и целый отряд, обитающие исключительно в тропиках. Настоящими термофилами являются растения жарких тропических районов. Они не переносят низких температур и нередко гибнут уже при 0 °С, хотя физического замораживания их тканей и не происходит. Причинами гибели здесь обычно называют нарушение обмена веществ, подавление физиологических процессов, что приводит к образованию в растениях не свойственных им продуктов, в том числе и вредных, вызывающих отравление.

Примеры видов, обладающих различной

устойчивостью к температуре

Рачок Thermosbaena mirabilis живет при температуре 45-48°С и погибает, если температура падает ниже 30°С

Насекомые-эктопаразиты млекопитающих и птиц зависят от температуры тела животных

Двукрылые активны при температуре между 5 и 10°С в солнечные часы дня.

Эти виды очень чувствительны к повышению температуры

Животные — обитатели больших глубин способны переносить температуры, близкие к 0°С

Многие организмы обладают способностью переносить очень высокие температуры. Например, некоторые виды жуков и бабочек, пресмыкающие выдерживают температуру до 45—50 °С. В горячих источниках Калифорнии при температуре 52 °С обитает рыбка пятнистой ципринодон, в водах горячих ключей на Камчатке постоянно живут сине-зеленые водоросли при температуре 75—80 °С, верблюжья колючка переносит нагревание воздуха до 70 °С. Таким образом, общие закономерности воздействия температуры на живые организмы проявляются в их способности существовать в определенном диапазоне температуры. Этот диапазон ограничен нижней летальной (смертельной) и верхней летальной температурой.

Температура, наиболее благоприятная для жизнедеятельности и роста, называется оптимальной (табл. 4.6).

Оптимальные температуры для выращивания растений

Температурный оптимум большинства живых организмов находится в пределах 20—25 С, и лишь у обитателей жарких, сухих районов температурный оптимум жизнедеятельности находится несколько выше 25—28°С. Например, некоторые прямокрылые (кузнечики) проявляют полуденную активность в условиях пустыней Палестины при температуре 40°С и выше.

Для организмов умеренных и холодных зон России оптимальные температуры от 10 до 20°С. Так, у ветреницы дубравной процесс фотосинтеза наиболее интенсивно протекает при 10°С.

В зависимости от ширины интервала температуры, в которой данный вид может существовать, организмы делятся на эвритермные и стенотермные. Эвритермные организмы выдерживают широкие колебания температуры, стенотермные живут лишь в узких пределах.

К эвритермным относится большинство организмов районов с континентальным климатом. Многие из них имеют покоящие стадии, переносящие особенно широкий диапазон температуры (покоящиеся яйца, цисты, куколки насекомых, находящиеся в состоянии анабиоза, взрослые животные, споры бактерий, семена растений).

Беспозвоночные, рыбы, амфибии и рептилии лишены способности поддерживать температуру тела в узких границах. Их называют пойкилотермными (от греч. poikilos — разный). Данных животных часто называют также эктотермными, так как они больше зависят от тепла, поступающего извне, чем от того тепла, которое образуется в обменных процессах. Характерна низкая интенсивность обмена и отсутствие механизма сохранения тепла. Раньше этих животных обычно называли холодокровными, но этот термин неточен и может вводить в заблуждение.

Птицы и млекопитающие способны поддерживать достаточно постоянную температуру тела независимо от окружающей температуры. Этих животных называют гомойотермными (от греч. homoios — подобный) или, по старой терминологии, что менее правильно, теплокровными. Гомойотермные животные относительно мало зависят от внешних источников тепла. Благодаря высокой интенсивности обмена у них вырабатывается достаточное количество тепла, которое может сохраняться. Поскольку эти животные существуют за счет внутренних источников тепла, их называют в настоящее время чаще эндотермными.

Растения и животные в ходе длительного эволюционного развития, приспосабливаясь к периодическим изменениям температурных условий, выработали в себе различную потребность к теплу в разные периоды жизни. Например, прорастание семян растений происходит при более низких температурах, чем последующий их рост. Семена пшеницы, овса, ячменя прорастают при 1—2°С, всходы же появляются при 4—5^0. В период цветения растениям, как правило, необходимо больше тепла, чем в период созревания семян, плодов. Томаты лучше растут и развиваются, когда температура днем 25—26 °С, ночью 17—18°С. Температурный оптимум живых организмов зависит и от других экологических факторов. Установлено, что при полном освещении и избытке углекислого газа в воздухе оптимальная температура фотосинтеза 30 °С, а при слабом освещении и недостатке углекислого газа она снижается до 10°С (рис. 4.8).

При характеристике температуры необходимо различать температуру воздуха и температуру почвы, разность между ними. Для растений это особенно важно, так как они способны поглощать питательные вещества из почвы при условии, если температура почвы будет на несколько градусов ниже температуры воздуха. Например, гречиха достигает наилучшего развития, когда температура близ корней равнг. 10°С, а у надземных частей 22°С. При температуре почвы и воздуха 22°С состояние растений резко ухудшается, и они не дают цветков. При дальнейшем повышении температуры почвы до 34°С, когда надземные органы остаются при 22°С, у растений наблюдается отмирание верхушек почек, стеблей, а впоследствии погибает все растение.

почему температурный фактор так важен для живых существ. Смотреть фото почему температурный фактор так важен для живых существ. Смотреть картинку почему температурный фактор так важен для живых существ. Картинка про почему температурный фактор так важен для живых существ. Фото почему температурный фактор так важен для живых существ

Рис. 4.8. Соотношение между фотосинтезом и дыханием

в зависимости от температур

При оптимальных температурах у всех организмов физиологические процессы протекают наиболее интенсивно, что способствует увеличению темпов их роста. Здесь к биологическим процессам вполне приемлемо правило Вант-Гоффа (Т.А. Акимова, В.В. Хаскин, 1998).

Так, если скорость Vт реакции измерена при двух температурах Т1 и Т2, причем Т1

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *