почему окислительное фосфорилирование называется так

Как используется энергия электронов в процессе окислительного фосфорилирования? Почему этот процесс так называется?

Обсуждение вопроса:

почему окислительное фосфорилирование называется так. Смотреть фото почему окислительное фосфорилирование называется так. Смотреть картинку почему окислительное фосфорилирование называется так. Картинка про почему окислительное фосфорилирование называется так. Фото почему окислительное фосфорилирование называется так

почему окислительное фосфорилирование называется так. Смотреть фото почему окислительное фосфорилирование называется так. Смотреть картинку почему окислительное фосфорилирование называется так. Картинка про почему окислительное фосфорилирование называется так. Фото почему окислительное фосфорилирование называется так

Окислительное фосфорилирование, синтез АТФ из аденозиндифосфата и неорганического фосфата, осуществляющийся в живых клетках, благодаря энергии, выделяющейся при окислении органических веществ в процессе клеточного дыхания.

У животных, растений и грибов окислительное фосфорилирование протекает в специализированных субклеточных структурах-митохондриях; у бактерий ферментные системы, осуществляющие этот процесс, находятся в клеточной мембране.

почему окислительное фосфорилирование называется так. Смотреть фото почему окислительное фосфорилирование называется так. Смотреть картинку почему окислительное фосфорилирование называется так. Картинка про почему окислительное фосфорилирование называется так. Фото почему окислительное фосфорилирование называется так

Окисли́тельное фосфорили́рование — метаболический путь, при котором энергия, образовавшаяся при окислении питательных веществ, запасается в митохондриях клеток в виде АТФ.

При окислительном фосфорилировании происходит перенос электронов от соединений-доноров к соединениям-акцепторам в ходе окислительно-восстановительных реакций. В ходе этих реакций выделяется энергия, которая далее запасается в виде АТФ. У эукариот эти окислительно-восстановительные реакции осуществляются несколькими белковыми комплексами, локализованными во внутренней митохондриальной мембране, а у прокариот они располагаются в межмембранном пространстве клетки. Этот набор связанных белков составляет электроно-транспортную цепь (ЭТЦ). У эукариот в состав ЭТЦ входит пять белковых комплексов, в то время как у прокариот её составляют множество различных белков, работающих с различными донорами и акцепторами электронов.

Энергия, выделяющаяся при движении электронов по ЭТЦ, используется для транспорта протонов через внутреннюю митохондриальную мембрану в межмембранное пространство. Таким образом накапливается потенциальная энергия, слагающаяся из протонного градиента и электрического потенциала. Эта энергия высвобождается при возвращении протонов обратно в митохондриальный матрикс по их электрохимическому градиенту. Это возвращение происходит через особый белковый комплекс — АТФ-синтазу; сам процесс перемещения протонов по их электрохимическому градиенту получил название хемиосмос. АТФ-синтаза использует выделяющуюся при хемиосмосе энергию для синтеза АТФ из АДФ в ходе реакции фосфорилирования.

Источник

Окислительное фосфорилирование

Из Википедии — свободной энциклопедии

почему окислительное фосфорилирование называется так. Смотреть фото почему окислительное фосфорилирование называется так. Смотреть картинку почему окислительное фосфорилирование называется так. Картинка про почему окислительное фосфорилирование называется так. Фото почему окислительное фосфорилирование называется так

Энциклопедичный YouTube

Субтитры

Содержание

Окисли́тельное фосфорили́рование — метаболический путь, при котором энергия, образовавшаяся при окислении питательных веществ, запасается в митохондриях клеток в виде АТФ. Хотя различные формы жизни на Земле используют разные питательные вещества, АТФ является универсальным соединением, в котором запасается энергия, необходимая для других метаболических процессов. Почти все аэробные организмы осуществляют окислительное фосфорилирование. Вероятно, широкому распространению этого метаболического пути способствовала его высокая энергетическая эффективность по сравнению с анаэробным брожением.

При окислительном фосфорилировании происходит перенос электронов от соединений-доноров к соединениям-акцепторам в ходе окислительно-восстановительных реакций. В ходе этих реакций выделяется энергия, которая далее запасается в виде АТФ. У эукариот эти окислительно-восстановительные реакции осуществляются несколькими белковыми комплексами, локализованными во внутренней митохондриальной мембране, а у прокариот они располагаются в межмембранном пространстве [en] клетки. Этот набор связанных белков составляет электрон-транспортную цепь (ЭТЦ). У эукариот в состав ЭТЦ входит пять белковых комплексов, в то время как у прокариот её составляют множество различных белков, работающих с различными донорами и акцепторами электронов.

Энергия, выделяющаяся при движении электронов по ЭТЦ, используется для перекачки протонов из митохондриального матрикса через внутреннюю мембрану в межмембранное пространство. При этом увеличивается электрохимический градиент, то есть возрастает разность концентраций протонов и разность электрических потенциалов по обе стороны внутренней мембраны, и тем самым накапливается энергия, которая высвобождается при возвращении протонов в матрикс. Обратно в матрикс протоны проходят через особый белковый комплекс — АТФ-синтазу; сам процесс перемещения протонов по их электрохимическому градиенту получил название хемиосмос. АТФ-синтаза использует выделяющуюся при хемиосмосе энергию для синтеза АТФ из АДФ в реакции фосфорилирования. Эта реакция запускается при вращении части АТФ-синтазы, которое поддерживается благодаря потоку протонов: таким образом, АТФ-синтаза работает как вращающийся молекулярный мотор.

Хотя окислительное фосфорилирование обеспечивает энергией клетки и поддерживает жизнь клеток, в ходе этого процесса также образуются активные формы кислорода, в частности, супероксид и пероксид водорода. Они способствуют образованию в клетках свободных радикалов, которые разрушают белки и причиняют вред клеткам, приводя к болезням и старению. Ферменты окислительного фосфорилирования являются мишенями для многих биологически активных веществ и ядов, которые подавляют их активность.

Источник

Окислительное фосфорилирование

При окислительном фосфорилировании происходит перенос электронов от соединений-доноров к соединениям-акцепторам в ходе окислительно-восстановительных реакций. В ходе этих реакций выделяется энергия, которая далее запасается в виде АТФ. У эукариот эти окислительно-восстановительные реакции осуществляются несколькими белковыми комплексами, локализованными во внутренней митохондриальной мембране, а у прокариот они располагаются в межмембранном пространстве клетки. Этот набор связанных белков составляет электроно-транспортную цепь (ЭТЦ). У эукариот в состав ЭТЦ входит пять белковых комплексов, в то время как у прокариот её составляют множество различных белков, работающих с различными донорами и акцепторами электронов.

Энергия, выделяющаяся при движении электронов по ЭТЦ, используется для транспорта протонов через внутреннюю митохондриальную мембрану в межмембранное пространство. Таким образом накапливается потенциальная энергия, слагающаяся из протонного градиента и электрического потенциала. Эта энергия высвобождается при возвращении протонов обратно в митохондриальный матрикс по их электрохимическому градиенту. Это возвращение происходит через особый белковый комплекс — АТФ-синтазу; сам процесс перемещения протонов по их электрохимическому градиенту получил название хемиосмос. АТФ-синтаза использует выделяющуюся при хемиосмосе энергию для синтеза АТФ из АДФ в ходе реакции фосфорилирования. Эта реакция запускается потоком протонов, которые вызывают вращение части АТФ-синтазы; таким образом, АТФ-синтаза работает как вращающийся молекулярный мотор.

Хотя окислительное фосфорилирование относится к жизненно важным реакциям фосфорилирования, в ходе этого процесса также образуются активные формы кислорода, в частности, супероксид и пероксид водорода. Они вызывают образование в клетках свободных радикалов, которые причиняют вред клеткам, приводя к болезням и старению. Ферменты окислительного фосфорилирования являются мишенями для многих биологически активных веществ и ядов, которые подавляют их активность.

Окислительное фосфорилирование следует отличать от субстратного фосфорилирования, при котором АТФ синтезируется не за счёт энергии переноса электронов и протонов по цепи переносчиков, а при фосфорилировании АДФ до АТФ при отрыве фосфата от соединений с высоким потенциалом переноса фосфата.

Связанные понятия

Упоминания в литературе

Связанные понятия (продолжение)

Метаболи́зм (от греч. «превращение», «изменение») или обме́н веще́ств — набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды.

Антимицины — группа вторичных метаболитов, синтезируемых бактериями рода Streptomyces.

Электрохими́ческий градиéнт, или градиéнт электрохимического потенциáла, — совокупность градиента концентрации и мембранного потенциала, которая определяет направление движения ионов через мембрану. Состоит из двух составляющих: химического градиента (градиента концентрации), или разницы в концентрациях растворённого вещества по обе стороны мембраны, и электрического градиента (мембранного потенциала), или разницы зарядов, расположенных на противоположных сторонах мембраны. Градиент возникает вследствие.

Хромопротеиды (от греч. chroma — краска) — сложные белки, состоящие из простого белка и связанного с ним окрашенного небелкового компонента — простетической группы. Различают гемопротеины (содержат в качестве простетической группы гем), магнийпорфирины и флавопротеины (содержат производные изоаллоксазина). Хромопротеиды участвуют в таких процессах жизнедеятельности, как фотосинтез, клеточное дыхание и дыхание всего организма, транспорт кислорода и углекислого газа, окислительно-восстановительные.

L-аспарагина́за (КФ 3.5.1.1), L-Аспарагин амидогидролаза — фермент класса гидролаз, катализирующий гидролиз преимущественно L-аспарагина. Применяется как противоопухолевое цитостатическое средство в терапии некоторых лейкозов, а также при приготовлении пищи.

Источник

Окислительное фосфорилирование. Механизмы, нарушения.

» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>

Окислительное фосфорилирование

Окислительное фосфорилирование состоит из процессов окисления и фосфорилирования, которые между собой сопряжены.

Катаболизм органических веществ в тканях сопровождается потреблением кислорода и выделением СО2. Этот процесс называют тканевым дыханием. Кислород в этом процессе используется как акцептор водорода от окисляемых (дегидрируемых) веществ (субстратов), в результате чего синтезируется вода. Процесс окисления можно представить следующим уравнением: SH2 + 1/2 O2 → S+ H2O. Окисляемые различные органические вещества (S – субстраты), представляют собой метаболиты катаболизма, их дегидрирование является экзоэргическим процессом. Энергия, освобождающаяся в ходе реакций окисления, либо полностью рассеивается в виде тепла, либо частично тратится на фосфорилирование ADP с образованием АТР. Организм превращает около 40% энергии, выделяющейся при окислении, в энергию макроэргических связей АТР. Большинство организмов в биосфере использует этот способ или очень сходный с ним (в качестве терминального акцептора водорода может быть не кислород, а другое соединение) как основной источник энергии, необходимый для синтеза внутриклеточной АТР. Таким путем клетка превращает химическую энергию питательных веществ, поступивших извне, в утилизируемую метаболическую энергию. Реакция дегидрирования и способ превращения выделившейся энергии путем синтеза АТР – это энергетически сопряженные реакции. Целиком весь сопряженный процесс называется окислительным фосфорилированием ADP:

почему окислительное фосфорилирование называется так. Смотреть фото почему окислительное фосфорилирование называется так. Смотреть картинку почему окислительное фосфорилирование называется так. Картинка про почему окислительное фосфорилирование называется так. Фото почему окислительное фосфорилирование называется так

Окислительное фосфорилирование ADP

СХЕМА ЭТАПОВ КАТАБОЛИЗМА

почему окислительное фосфорилирование называется так. Смотреть фото почему окислительное фосфорилирование называется так. Смотреть картинку почему окислительное фосфорилирование называется так. Картинка про почему окислительное фосфорилирование называется так. Фото почему окислительное фосфорилирование называется так

1-й этап. Образование мономеров из полимеров.
Полимеры → Мономеры
Белки → Аминокислоты
Крахмал → Глюкоза
Жиры → глицерин + жирные кислоты

2-й этап. Превращение мономеров в ПВК и Ацетил-КоА.

3-й этап. Превращение Ацетил-КоА в конечные продукты катаболизма: СО2 и Н2О.

Для всех классов веществ последний этап катаболизма одинаков: на 3-м этапе образуется большинство субстратов митохондриального окисления – 4 вещества из 9 основных и 5-й субстрат – ПВК.

Процесс окисления

Процесс окисления происходит при движении электронов по дыхательной цепи от субстратов тканевого дыхания на кислород. Дыхательная цепь окислительного фосфорилирования состоит из 4 белковых комплексов, встроенных во внутреннюю мембрану митохондрий и небольших подвижных молекул убихинона и цитохрома С, которые циркулируют в липидном слое мембраны между белковыми комплексами.

почему окислительное фосфорилирование называется так. Смотреть фото почему окислительное фосфорилирование называется так. Смотреть картинку почему окислительное фосфорилирование называется так. Картинка про почему окислительное фосфорилирование называется так. Фото почему окислительное фосфорилирование называется так

Комплекс I – НАДН2 дегидрогеназный комплекс самый большой из дыхательных ферментных комплексов – имеет молекулярную массу свыше 800КДа, состоит из более 22 полипептидных цепей, в качестве коферментов содержит ФМН и 5 железо-серных (Fe2S2 и Fe4S4) белков.

Комплекс II – СДГ. В качестве коферментов содержит ФАД и железо-серный белок.

Комплекс III – Комплекс bc1 (фермент QH2 ДГ), имеет молекулярную массу 500КДа, состоит из 8 полипептидных цепей, и вероятно существует в виде димера. Каждый мономер содержит 3 гема, связанных с цитохромами b562, b566, с1, и железо-серный белок.

Комплекс IV – Цитохромоксидазный комплекс имеет молекулярную массу 300КДа, состоит из 8 полипептидных цепей, существует в виде димера. Каждый мономер содержит 2 цитохрома (а и а3) и 2 атома меди.

Коэнзим Q (убихинон). Липид, радикал которого у млекопитающих образован 10 изопреноидными единицами (Q10). Убихинон переносит по 2Н+ и 2е-.

почему окислительное фосфорилирование называется так. Смотреть фото почему окислительное фосфорилирование называется так. Смотреть картинку почему окислительное фосфорилирование называется так. Картинка про почему окислительное фосфорилирование называется так. Фото почему окислительное фосфорилирование называется так

Цитохром с. Периферический водорастворимый мембранный белок с массой 12,5КДа, содержит 1 полипептидную цепь из 100 АК, и молекулу гема.

Молекулярные соотношения между компонентами дыхательной цепи отличаются в разных тканях. Например, в миокарде, на 1 молекулу НАДН2 дегидрогеназного комплекса приходиться 3 молекулы комплекса b-c1, 7 молекул цитохромоксидазного комплекса, 9 молекул цитохрома С и 50 молекул убихинона.

Электрохимический потенциал. Компоненты дыхательной цепи располагаются в мембране в порядке повышения их редокс-потенциала. При переходе е- от комплекса с низким редокс-потенциалом к комплексу с более высоким редокс-потенциалом происходит выделение свободной энергии. При окислении 1 НАДН2 выделяется 220 кДж/моль свободной энергии.

I, III и IV комплексы дыхательной цепи используют 65-70% этой свободной энергии для переноса Н+ из матрикса митохондрий в межмембранное пространство, 30-35% свободной энергии рассеивается в виде тепла.

почему окислительное фосфорилирование называется так. Смотреть фото почему окислительное фосфорилирование называется так. Смотреть картинку почему окислительное фосфорилирование называется так. Картинка про почему окислительное фосфорилирование называется так. Фото почему окислительное фосфорилирование называется так Этапы движения е – по дыхательной цепи

В сумме осмотический градиент протонов и разность потенциалов образуют электрохимический потенциал, который в типичной клетке составляет около 60+160=220 мВ.

Механизм переноса Н+ через мембрану до конца не изучен. Вероятно, у разных компонентов дыхательной цепи существуют разные механизмы сопряжения транспорта е- с перемещением Н+.

Образовавшийся на внутренней мембране митохондрий электрохимический потенциал используется для:

Окислительное фосфорилирование. Процесс фосфорилирования

Процесс фосфорилирования осуществляется АТФ-синтетазой (Н+-АТФ-аза), которая потребляет 40-45% свободной энергии, выделившейся при окислении. Н+-АТФ-аза интегральный белок внутренней мембраны митохондрий, она состоит из 2 белковых комплексов F0 и F1.

почему окислительное фосфорилирование называется так. Смотреть фото почему окислительное фосфорилирование называется так. Смотреть картинку почему окислительное фосфорилирование называется так. Картинка про почему окислительное фосфорилирование называется так. Фото почему окислительное фосфорилирование называется так

Гидрофобный комплекс F0 погружён в мембрану и служит основанием, которое фиксирует АТФ-синтазу в мембране. Он состоит из нескольких субъединиц, образующих канал, по которому протоны переносятся в матрикс.

Комплекс F1 выступает в митохондриальный матрикс. Он состоит из 9 субъединиц (3α, 3β, γ, δ, ε). Субъединицы α и β уложены попарно, образуя «головку»; между а- и β-субъединицами располагаются 3 активных центра, в которых происходит синтез АТФ; γ, δ, ε – субъединицы связывают комплекс F1, с F0.

почему окислительное фосфорилирование называется так. Смотреть фото почему окислительное фосфорилирование называется так. Смотреть картинку почему окислительное фосфорилирование называется так. Картинка про почему окислительное фосфорилирование называется так. Фото почему окислительное фосфорилирование называется так

почему окислительное фосфорилирование называется так. Смотреть фото почему окислительное фосфорилирование называется так. Смотреть картинку почему окислительное фосфорилирование называется так. Картинка про почему окислительное фосфорилирование называется так. Фото почему окислительное фосфорилирование называется так

АТФ-синтетаза обеспечивает обратимое взаимопревращение энергии электрохимического потенциала и энергии химических связей.

Электрохимический потенциал внутренней мембраны заставляет Н+ двигаться из межмебранного пространства по каналу АТФ-синтазы в матрикс митохондрий. При каждом переносе протонов через канал Fo энергия электрохимического потенциала расходуется на поворот стержня, в результате которого циклически изменяется конформация а- и β-субъединиц и все 3 активных центра, образованных парам α- и β-субъединиц, катализируют очередную фазу цикла: 1) связывание АДФ и Н3РО4; 2) образование фосфоангидридной связи АТФ; 3) освобождение конечного продукта АТФ.

Окислительное фосфорилирование. Специфические ингибиторы тканевого дыхания

Окислительное фосфорилирование. Сопряжения и разобщения

Процесс окисления создает электрохимический потенциал, а процесс фосфорилирования его использует. Таким образом, электрохимический потенциал обеспечивает сопряжение (связывание) процессов окисления и фосфорилирования (окислительного фосфорилирования).

Так как необходимый для сопряжения электрохимический потенциал создают I, III и IV комплексы дыхательной цепи, их называют пунктами сопряжения окисления и фосфорилирования.

Повреждение внутренней мембраны митохондрий или увеличение ее проницаемости под действием разобщителей вызывает исчезновение электрохимического потенциала, разобщение процессов окисления и фосфорилирования, и прекращение синтеза АТФ.

Разобщение дыхания и фосфорилирова­ния назы­вают явление исчезновения на мембране электрохимического потенциала под действием разобщителей и прекращение синтеза АТФ.

Убедительные экспериментальные доказательства в пользу описанного механизма сопряжения дыхания и фосфорилирования были получены с помощью ионофоров. Молекулы этих веществ, как правило, липофильны и способны переносить ионы через мембрану. Например, 2,4-динитрофенол (протонофор) легко диффундирует через мембрану, в ионизированной и неионизированной форме, перенося протоны в сторону их меньшей концентрации в обход протонных каналов. Таким образом, 2,4-динитрофенол уничтожает электрохимический потенциал, и синтез АТР становится невозможным, хотя окисление субстратов при этом происходит. Энергия дыхательной цепи в этом случае полностью рассеивается в виде теплоты. Этим объясняется пирогенное действие разобщителей. Разобщающим действием обладают гормон щитовидной железы – тироксин, а также некоторые антибиотики, такие как валиномицин и грамицидин.

Разобщителями являются вещества, которые могут переносить протоны (протонофоры) или другие ионы (ионофоры) через мембрану минуя каналы АТФ-синтетазы. В результате разобщения количество АТФ снижается, АДФ увеличивается, возра­стает скорость потребления О2, окисления НАДН2, ФАДН2, а образовавшаяся свободная энергия выделяется в виде теп­лоты.

Как правило, разобщители — липофильные веще­ства, легко проходящие через мембраны. Например, вещество 2,4-динитрофенол (переносит Н + ), лекарство – дикумарол, метаболит – билирубин, гормон щитовидной железы – ти­роксин, антибиотики – валиномицин и грамицидин.

Окислительное фосфорилирование. Вещества-разобщители процессов окисления и фосфорилирования

Они не прекращают процессов окисления, но снижают синтез АТФ. Дыхательная цепь работает, а АТФ при этом синтезируется в меньшем количестве, чем в норме. Тогда энергия, получаемая при переносе электронов по цепи МтО, выделяется в виде тепла. Такое состояние, когда происходит окисление субстратов, а фосфорилирование (образование АТФ из АДФ и Ф) не идет, называется РАЗОБЩЕНИЕМ ОКИСЛЕНИЯ И ФОСФОРИЛИРОВАНИЯ. К такому состоянию может приводить действие веществ-разобщителей:

2,4-ДИНИТРОФЕНОЛ, открытый в 1944 году Липманом, при введении в организм повышает температуру тела и понижает синтез АТФ. Это вещество, наряду с другими, открытыми позже, пытались использовать для лечения ожирения, но безуспешно.

Механизм действия веществ-разобщителей становится понятням только с точки зрения хемиоосмотической теории.

Разобщители являются слабыми кислотами, растворимыми в жирах. В межмембранном пространстве они связывают протоны, и затем диффундируют в матрикс, тем самым снижая DmH+.

Подобным действием обладает и йодсодержащие гормоны щитовидной железы – тироксин и трийодтиронин. При состояниях, сопровождающихся гиперфункцией щитовидной железы (например, Базедова болезнь), больным не хватает энергии АТФ: они много едят (нужно большое количество субстратов для окисления), но при этом теряют в весе. Большая часть энергии выделяется в виде тепла.

Схема цепи митохондриального окисления не раскрывает механизма образования АТФ путем окислительного фософорилирования. Этот механизм объясняется гипотезой П.Митчелла.

Окислительное фосфорилирование. Коэффициент

Для оценки эффективности окислительного фосфорилирования используют коэффициент окислительного фосфорилирования (Р/О).
Коэффициентом окислитель­ного фосфорилирования называют от­ношение количества фосфорной кислоты (Р), использованной на фосфорилирование АДФ, к атому кислорода (О), поглощённого в процессе дыхания.
При окисление молекулы НАДН2, е – по дыхательной цепи проходят 3 пункта сопряжения, что обеспечивает синтез 3 АТФ при затрате 3 Н3РО4 и 3 АДФ на 1 атом кислорода. Соответственно для НАДН2 Р/О=3.
При окисление молекулы ФАДН2, е – по дыхательной цепи проходят только 2 пункта сопряжения, что обеспечивает синтез 2 АТФ при затрате 2 Н3РО4 и 2 АДФ на 1 атом кислорода. Соответственно для ФАДН2 Р/О=2.

Эти величины Р/О отражают теоретический максимум синтеза АТФ, фактически эта величи­на меньше из-за затрат на транспорт.

Окислительное фосфорилирование. Дыхательный контроль

В норме субстраты тканевого дыхания и О2 находятся в достаточном количестве и не лимитируют окислительное фосфорилирование. Активность окислительного фосфорилирования ограничивает только концентрация АДФ, которая обратно пропорциональна концентрации АТФ.

При нагрузке концентрация АТФ снижается, а АДФ увели­чивается, что ускоряет дыхание и фосфорилирование. В состоянии покоя количество АТФ увеличивается, а АДФ снижается, что тормозит дыхание и фосфорилирование.

Зависимость ин­тенсивности дыхания митохондрий от концент­рации АДФ называют дыхательным контролем. В результате дыхательного контроля скорость синтеза АТФ соответствует потребностям клет­ки в энергии. Общее содержание АТФ в организме 30—50 г, но каждая молекула АТФ в клетке «живёт» мень­ше минуты. В сутки у человека синтезируется 40—60 кг АТФ и столько же распадается.

Скорость дыхания митохондрий может контролироваться концентрацией ADP. Это объясняется тем, что окисление и фосфорилирование жестко сопряжены. Энергия, необходимая клетке для совершения работы, поставляется за счет гидролиза АТР. Концентрация ADP при этом увеличивается; в результате создаются условия для ускорения дыхания, что и ведет к восполнению запасов АТР.

Ингибиторы цепи транспорта электронов и окислительного фосфорилирования

Ингибиторы, блокирующие дыхательную цепь, действуют в определенных местах, препятствуя работе дыхательных ферментов (KCN, барбитураты, ротенон). Существуют также вещества, ингибирующие окислительное фосфорилирование.

Окислительное фосфорилирование.
Макроэргические связи и макроэргические соединения, роль в организме.
АТФ как важнейший аккумулятор и источник энергии

В живых организмах существует целая группа органических фосфатов, гидролиз которых приводит к освобождению большого количества свободной энергии. Такие соединения называют высокоэнергетическими фосфатами. Разные фосфорилированные соединения обладают разным запасом свободной энергии. К группе высокоэнергетических фосфатов, помимо АТФ, относят енолфосфаты, ангидриды и фосфогуанидины.

При гидролизе концевой фосфоангидридной связи АТФ превращается в АДФ и Рн. При этом изменение свободной энергии составляет —7,3 ккал/моль.

Величина свободной энергии гидролиза АТФ делает возможным его образование из АДФ за счёт переноса фосфатного остатка от таких высокоэнергетических фосфатов, как, например, фосфоенолпируват или 1,3-бисфосфоглицерат; в свою очередь, АТФ может участвовать в таких эндергонических реакциях, как фосфорилирование глюкозы или глицерина. АТФ выступает в роли донора энергии в эндергонических реакциях многих анаболических процессов. Некоторые биосинтетические реакции в организме могут протекать при участии других нуклеозидтрифосфатов, аналогов АТФ; к ним относят гуанозинтрифосфат (ГТФ), уридинтрифосфат (УТФ) и цитидинтрифосфат (ЦТФ). Все эти нуклеотиды, в свою очередь, образуются при использовании свободной энергии концевой фосфатной группы АТФ. Наконец, за счёт свободной энергии АТФ совершаются различные виды работы, лежащие в основе жизнедеятельности организма, например, такие как мышечное сокращение или активный транспорт веществ.

Таким образом, АТФ — главный, непосредственно используемый донор свободной энергии в биологических системах. В клетке молекула АТФ расходуется в течение одной минуты после её образования. У человека количество АТФ, равное массе тела, образуется и разрушается каждые 24 ч.

Использование АТФ как источника энергии возможно только при условии непрерывного синтеза АТФ из АДФ за счёт энергии окисления органических соединений. Цикл АТФ—АДФ — основной механизм обмена энергии в биологических системах, а АТФ — универсальная «энергетическая валюта».

Окислительное фосфорилирование

В сутки человек потребляет в среднем 27 моль кислорода. Основное его количество (примерно 25 моль) используется в митохондриях в дыхательной цепи. Следовательно, ежесуточно синтезируется 125 моль ATP или 62 кг (при расчете использовали коэффициент Р/О=2,5, то есть среднее значение коэффициента фосфорилирования). Масса всей АТР, содержащейся в организме, составляет примерно 20-30 г. Следовательно, можно сделать вывод, что каждая молекула АТР за сутки 2500 раз проходит процесс гидролиза и синтеза, что и характеризует интенсивность обмена АТР.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *