Big data science что это

📊 Data Science и Big Data: сходства и различия

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что это

Если вы заинтересованы в работе с данными, важно иметь четкое представление о связанных с ней направлениях ИТ. В статье, подготовленной при поддержке Факультетов Искусственного интеллекта и Аналитики Big Data онлайн-университета GeekBrains, мы расскажем о сходстве и основных различиях между специализациями Data Science и Big Data.

Термины

Data Science – междисциплинарная область, которая охватывает практически все, что связано с данными: от их подготовки до очистки и анализа. Data Science использует научные методы и алгоритмы для работы как со структурированными, так и с неструктурированными данными. Эта область сочетает в себе статистику, математику, машинное обучение, решение проблем и многое другое.

В статье «Научиться Data Science онлайн» мы подробнее рассказали, чем занимаются специалисты Data Science и как овладеть профессией с нуля.

Big Data

Big Data – область, в которой рассматриваются различные способы анализа и систематического извлечения больших объемов данных. Big Data включает применение механических или алгоритмических процессов получения оперативной информации для решения сложных бизнес-задач. Специалисты по Big Data работают с сырыми неструктурированными данными, результаты анализа которых используются для поддержки принятия решений в бизнесе. Аналитика больших данных включает проверку, преобразование, очистку и моделирование данных.

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что этоИсточник

Работа с большими данными строится вокруг четырех правил (c англ. V’s of Big Data: Volume, Velocity, Variety, Veracity):

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что этоИсточник

Применение

Data Science

Big Data

Аналитика больших данных применяется в самых разных областях. Перечислим некоторые из них:

Навыки

Data Science

Big Data

Специалист по анализу больших данных должен хорошо разбираться в таких языках программирования, как R и/или Python и SQL. Наряду с хорошими знаниями статистики и математики, ему потребуются навыки работы с инструментами, вроде Hadoop или Spark, для решения проблем, связанных с огромными объемами данных и их распределенной обработкой. Необходимо владеть навыками визуализации и преобразования данных, а также разбираться в машинном обучении.

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что этоИсточник

Обязанности

Data Science

Учитывая огромное количество ежедневно обрабатываемых с помощью различных устройств по всему миру данных, организации заинтересованы в получении ценной информации из этого потока. Специалисты Data Science выполняют исследовательский анализ, а также используют различные виды алгоритмов машинного обучения для составления прогнозов определенных событий. Они сосредоточены на выявлении неизвестных корреляций, скрытых моделей и рыночных тенденций.

Big Data

В обязанности аналитиков больших данных входит работа с большим количеством разнородной информации, собранной из различных источников и поступающей с высокой скоростью. Специалисты по Big Data описывают поведение и структуру данных, а также то, как они могут быть представлены с помощью инструментов анализа: Spark, Hadoop и т. д.

Ключевые обязанности специалиста по Big Data включает понимание идей и тенденций, которые выявляются с помощью огромных наборов данных. После преобразования неструктурированной информации, бизнесу становится ясно, чего именно хотят клиенты, какие продукты продвигаются быстрее, каковы ожидания пользователей от обслуживания, как ускорить выход продукта на рынок и какие способы снижения затрат существуют. Большие данные явно приводят к большим временным выгодам для организаций, поэтому существует огромный спрос на специалистов в данной области.

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что этоИсточник

Карьерные перспективы

В российском IT-секторе, есть тенденция к разделению специалистов по Data Science и Big Data при найме на работу. Однако по запросам Big Data в Яндекс.Работа и HeadHunter, можно заметить, что анализ больших данных включен в описание вакансий как Data Scientist, так и Big Data Engineer.

Заключение

Если вы хотите построить карьеру в Data Science или Big Data, лучше начать прямо сейчас. Эти области постоянно расширяются, генерируя новые вакансии. Для освоения необходимых навыков с нуля запишитесь на курсы факультетов Искусственного интеллекта и Аналитики Big Data онлайн-университета GeekBrains. Учебные программы построены на практической работе над проектами с ведущими специалистами отрасли и личным помощником-куратором.

Источник

Big Data: что это и где применяется?

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что это

Почему все вокруг говорят про большие данные? Какие именно данные считаются большими? Где их искать, зачем они нужны, как на них заработать? Объясняем простыми словами вместе с экспертом SkillFactory — ведущим автором курса по машинному обучению, старшим аналитиком в «КиноПоиске» Александром Кондрашкиным.

Что такое Big Data

Big Data (большие данные) — огромные наборы разнообразных данных. Огромные, потому что их объемы такие, что простой компьютер не справится с их обработкой, а разнообразные — потому что эти данные разного формата, неструктурированные и содержат ошибки. Большие данные быстро накапливаются и используются для разных целей.

Big Data — это не обычная база данных, даже если она очень большая. Вот отличия:

Не большие данныеБольшие данные
База записей о тысячах работников корпорации. Информация в такой базе имеет заранее известные характеристики и свойства, ее можно представить в виде таблицы, как в Excel.Журнал действий сотрудников. Например, все данные, которые создает во время работы колл-центр, где работает 500 человек.
Информация об именах, возрасте и семейном положении всех 2,5 миллиардов пользователей Facebook — это всего лишь очень большая база данных.Переходы по ссылкам, отправленные и полученные сообщения, лайки и репосты, движения мыши или касания экранов смартфонов всех пользователей Facebook.
Архив записей городских камер видеонаблюдения.Данные системы видеофиксации нарушений правил дорожного движения с информацией о дорожной ситуации и номерах автомобилей нарушителей; информация о пассажирах метро, полученная с помощью системы распознавания лиц, и о том, кто из них числится в розыске.

Объем информации в мире увеличивается ежесекундно, и то, что считали большими данными десятилетие назад, теперь умещается на жесткий диск домашнего компьютера.

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что это

60 лет назад жесткий диск на 5 мегабайт был в два раза больше холодильника и весил около тонны. Современный жесткий диск в любом компьютере вмещает до полутора десятков терабайт (1 терабайт равен 1 млн мегабайт) и по размерам меньше обычной книги.

В 2021 году большие данные измеряют в петабайтах. Один петабайт равен миллиону гигабайт. Трехчасовой фильм в формате 4K «весит» 60‒90 гигабайт, а весь YouTube — 5 петабайт или 67 тысяч таких фильмов. 1 млн петабайт — это 1 зеттабайт.

Data Scientist с нуля

Cтаньте дата-сайентистом и приручите большие данные. Вы научитесь выявлять закономерности в данных и создавать модели для решения бизнес-задач.

Скидка 45% по промокоду BLOG.

Как работает технология Big Data?

Источники сбора больших данных делятся на три типа:

Все, что человек делает в сети, — источник социальных больших данных. Каждую секунду пользователи загружают в Instagram 1 тыс. фото и отправляют более 3 млн электронных писем. Ежесекундный личный вклад каждого человека — в среднем 1,7 мегабайта.

Другие примеры социальных источников Big Data — статистики стран и городов, данные о перемещениях людей, регистрации смертей и рождений и медицинские записи.

Большие данные также генерируются машинами, датчиками и «интернетом вещей». Информацию получают от смартфонов, умных колонок, лампочек и систем умного дома, видеокамер на улицах, метеоспутников.

Транзакционные данные возникают при покупках, переводах денег, поставках товаров и операциях с банкоматами.

Как обрабатывают большие данные?

Массивы Big Data настолько большие, что простой Excel с ними не справится. Поэтому для работы с ними используют специальное ПО.

Его называют «‎горизонтально масштабируемым‎‎»‎, потому что оно распределяет задачи между несколькими компьютерами, одновременно обрабатывающими информацию. Чем больше машин задействовано в работе, тем выше производительность процесса.

Такое ПО основано на MapReduce, модели параллельных вычислений. Модель работает так:

MapReduce — не конкретная программа, а скорее алгоритм, с помощью которого можно решить большинство задач обработки больших данных.

Примеры ПО, которое основывается на MapReduce:

Специалисты по большим данным используют оба инструмента: Hadoop для создания инфраструктуры данных и Spark для обработки потоковой информации в реальном времени.

Где применяется аналитика больших данных?

Большие данные нужны в маркетинге, перевозках, автомобилестроении, здравоохранении, науке, сельском хозяйстве и других сферах, в которых можно собрать и обработать нужные массивы информации.

Бизнесу большие данные нужны, чтобы:

Анализ больших данных позволяет не только систематизировать информацию, но и находить неочевидные причинно-следственные связи.

Продажи товаров

Онлайн-маркетплейс Amazon запустил систему рекомендаций товаров, работающую на машинном обучении. Она учитывает не только поведение и предыдущие покупки пользователя, но и время года, ближайшие праздники и остальные факторы. После того как эта система заработала, рекомендации начали генерировать 35% всех продаж сервиса.

В супермаркетах «Лента» с помощью больших данных анализируют информацию о покупках и предлагают персонализированные скидки на товары. К примеру, говорят в компании, система по данным о покупках может понять, что клиент изменил подход к питанию, и начнет предлагать ему подходящие продукты.

Американская сеть Kroger использует большие данные для персонализации скидочных купонов, которые получают покупатели по электронной почте. После того как их сделали индивидуальными, подходящими конкретным покупателям, доля покупок только по ним выросла с 3,7 до 70%.

Найм сотрудников

Крупные компании, в том числе российские, стали прибегать к помощи роботов-рекрутеров, чтобы на начальном этапе поиска сотрудника отсеять тех, кто не заинтересован в вакансии или не подходит под нее. Так, компания Stafory разработала робота Веру, которая сортирует резюме, делает первичный обзвон и выделяет заинтересованных кандидатов. PepsiCo заполнила 10% нужных вакансий только с помощью робота.

Банки

Автомобилестроение

В 2020 году у автоконцерна Toyota возникла проблема: нужно было понять причину большого числа аварий по вине водителей, перепутавших педали газа и тормоза. Компания собрала данные со своих автомобилей, подключенных к интернету, и на их основе определила, как именно люди нажимают на педали.

Оказалось, что сила и скорость давления различаются в зависимости от того, хочет человек затормозить или ускориться. Теперь компания разрабатывает систему, которая будет определять манеру давления на педали во время движения и сбросит скорость автомобиля, если водитель давит на педаль газа, но делает это так, будто хочет затормозить.

Медицина

Американские ученые научились с помощью больших данных определять, как распространяется депрессия. Исследователь Мунмун Де Чаудхури и ее коллеги загрузили в прогностическую модель сообщения из Twitter, Facebook и Reddit с геометками. Сообщения отбирали по словам, которые могут указывать на депрессивное и подавленное состояние. Расчеты совпали с официальными данными.

Госструктуры

Большие данные просто необходимы госструктурам. С их помощью ведется не только статистика, но и слежка за гражданами. Подобные системы есть во многих странах: известен сервис PRISM, которыми пользуются ФБР и ЦРУ для сбора персональных данных из соцсетей и продуктов Microsoft, Google и Apple. В России информацию о пользователях и телефонных звонках собирает система СОРМ.

Маркетинг

Социальные большие данные помогают группировать пользователей по интересам и персонализировать для них рекламу. Людей ранжируют по возрасту, полу, интересам и месту проживания. Те, кто живут в одном регионе, бывают в одних и тех же местах, смотрят видео и читают статьи на похожие темы, скорее всего, заинтересуются одними и теми же товарами.

При этом регулярно происходят скандалы, связанные с использованием больших данных в маркетинге. Так, в 2018 году стриминговую платформу Netflix обвинили в расизме из-за того, что она показывает пользователям разные постеры фильмов и сериалов в зависимости от их пола и национальности.

Медиа

С помощью анализа больших данных в медиа измеряют аудиторию. В этом случае Big Data может даже повлиять на политику редакции. Так, издание Huffington Post использует систему, которая в режиме реального времени показывает статистику посещений, комментариев и других действий пользователей, а также готовит аналитические отчеты.

Система в Huffington Post оценивает, насколько эффективно заголовки привлекают внимание читателя, разрабатывает методы доставки контента определенным категориям пользователей. Например, выяснилось, что родители чаще читают статьи со смартфона и поздно вечером в будни, после того как уложили детей спать, а по выходным они обычно заняты, — в итоге контент для родителей публикуется на сайте в удобное для них время.

Логистика

Использование больших данных помогает оптимизировать перевозки, сделать доставку быстрее и дешевле. В компании DHL работа с большими данными коснулась так называемой проблемы последней мили, когда необходимость проехать через дворы и найти парковку перед тем, как отдать заказ, съедает в общей сложности 28% от стоимости доставки. В компании стали анализировать «последние мили» с помощью информации с GPS и данных о дорожной обстановке. В результате удалось сократить затраты на топливо и время доставки груза.

Внутри компании большие данные помогают отслеживать качество работы сотрудников, соблюдение контрольных сроков, правильность их действий. Для анализа используют машинные данные, например со сканеров посылок в отделениях, и социальные — отзывы посетителей отделения в приложении, на сайтах и в соцсетях.

Обработка фото

До 2016 года не было технологии нейросетей на мобильных устройствах, это даже считали невозможным. Прорыв в этой области (в том числе благодаря российскому стартапу Prisma) позволяет нам сегодня пользоваться огромным количеством фильтров, стилей и разных эффектов на фотографиях и видео.

Аренда недвижимости

Сервис Airbnb с помощью Big Data изменил поведение пользователей. Однажды выяснилось, что посетители сайта по аренде недвижимости из Азии слишком быстро его покидают и не возвращаются. Оказалось, что они переходят с главной страницы на «Места поблизости» и уходят смотреть фотографии без дальнейшего бронирования.

Компания детально проанализировала поведение пользователей и заменила ссылки в разделе «Места поблизости» на самые популярные направления для путешествий в азиатских странах. В итоге конверсия в бронирования из этой части планеты выросла на 10%.

Кто работает с большими данными?

Дата-сайентисты специализируются на анализе Big Data. Они ищут закономерности, строят модели и на их основе прогнозируют будущие события.

Например, исследователь больших данных может использовать статистику по снятиям денег в банкоматах, чтобы разработать математическую модель для предсказания спроса на наличные. Эта система подскажет инкассаторам, сколько денег и когда привезти в конкретный банкомат.

Чтобы освоить эту профессию, необходимо понимание основ математического анализа и знание языков программирования, например Python или R, а также умение работать с SQL-базами данных.

Data Scientist с нуля

Вы освоите Python и SQL, познакомитесь с машинным обучением и определитесь со специализацией: Machine Learning, Computer Vision или Natural Language Processing. Скидка 5% по промокоду BLOG.

Аналитик данных использует тот же набор инструментов, что и дата-сайентист, но для других целей. Его задачи — делать описательный анализ, интерпретировать и представлять данные в удобной для восприятия форме. Он обрабатывает данные и выдает результат, составляя аналитические отчеты, статистику и прогнозы.

С Big Data также работают и другие специалисты, для которых это не основная сфера работы:

Освойте все инструменты, необходимые junior-аналитику и получите востребованную профессию за 6 месяцев.

Скидка 45% по промокоду BLOG.

Дата-инженер занимается технической стороной вопроса и первый работает с информацией: организует ее сбор, хранение и первоначальную обработку.

Дата-инженеры помогают исследователям, создавая ПО и алгоритмы для автоматизации задач. Без таких инструментов большие данные были бы бесполезны, так как их объемы невозможно обработать. Для этой профессии важно знание Python и SQL, уметь работать с фреймворками, например со Spark.

Курс подходит для тех, кто имеет базовые знания языка Python. За два месяца вы освоите все важные этапы Data Engineering.

Скидка 45% по промокоду BLOG.

Александр Кондрашкин о других профессиях, в которых может понадобиться Big Data: «Где-то может и product-менеджер сам сходить в Hadoop-кластер и посчитать что-то несложное, если обладает такими навыками. Наверняка есть множество backend-разработчиков и DevOps-инженеров, которые настраивают хранение и сбор данных от пользователей».

Востребованность больших данных и специалистов по ним

Востребованность больших данных растет: по исследованиям 2020 года, даже при пессимистичном сценарии объем рынка Big Data в России к 2024 году вырастет с 45 млрд до 65 млрд рублей, а при хорошем развитии событий — до 230 млрд.

Вместе с популярностью больших данных растет запрос и на тех, кто может эффективно с ними работать. В середине 2020 года Академия больших данных MADE от Mail.ru Group и HeadHunter провели исследование и выяснили, что специалисты по анализу данных уже являются одними из самых востребованных на рынке труда в России. За четыре года число вакансий в этой области увеличилось почти в 10 раз.

Более трети вакансий для специалистов по анализу данных (38%) приходится на IT-компании, финансовый сектор (29%) и сферу услуг для бизнеса (9%). В сфере машинного обучения IT-компании публикуют 55% вакансий на рынке, 10% приходит из финансового сектора и 9% — из сферы услуг.

Как начать работать с большими данными?

Проще будет начать, если у вас уже есть понимание алгоритмов и хорошее знание математики, но это не обязательно. Например, Оксана Дереза была филологом и для нее главной трудностью в Data Science оказалось вспомнить математику и разобраться в алгоритмах, но она много занималась и теперь анализирует данные в исследовательском институте.

Еще несколько историй людей, которые успешно освоили data-профессию

Если у вас нет математических знаний, на курсе SkillFactory «Data Science с нуля» вы получите достаточную подготовку, чтобы работать с большими данными. За год вы научитесь получать данные из веб-источников или по API, визуализировать данные с помощью Pandas и Matplotlib, применять методы математического анализа, линейной алгебры, статистики и теории вероятности для обработки данных и многое другое.

Чтобы стать аналитиком данных, вам пригодится знание Python и SQL — эти навыки очень популярны в вакансиях компаний по поиску соответствующей позиции. На курсе «Аналитик данных» вы получите базу знаний основных инструментов аналитики (от Google-таблиц до Python и Power BI) и закрепите их на тренажерах.

Важно определиться со сферой, в которой вы хотите работать. Студентка SkillFactory Екатерина Карпова, рассказывает, что после обучения ей была важна не должность, а сфера (финтех), поэтому она сначала устроилась консультантом в банк «Тинькофф», а теперь работает там аналитиком.

Data Science с нуля

Освойте все необходимые инструменты для уровня junior и получите самую востребованную IT-профессию 2021 года.

Источник

Что такое Data Science и кто такой Data Scientist

Что делает Data Scientist, сколько получает и как им стать, даже если вы не программист. Объясняем и делимся полезными ссылками.

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что это

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что это

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что это

Что такое Data Science?

Data Science — это работа с большими данными (англ. Big Data). Большие данные — это огромные объёмы неструктурированной информации: например, метеоданные за какой-то период, статистика запросов в поисковых системах, результаты спортивных состязаний, базы данных геномов микроорганизмов и многое другое. Ключевые слова здесь — «огромный объём» и «неструктурированность». Чтобы работать с такими данными, используют математическую статистику и методы машинного обучения.

Специалист, который делает такую работу, называется дата-сайентист (или Data Scientist). Он анализирует большие данные (Big Data), чтобы делать прогнозы. Какие именно прогнозы — зависит от того, какую задачу нужно решить. Итог работы дата-сайентиста — прогнозная модель. Если упростить, то это программный алгоритм, который находит оптимальное решение поставленной задачи.

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что это

Пишу научпоп, люблю делать сложное понятным. Рисую фантастику. Увлекаюсь спелеологией. Люблю StarCraft, шахматы, «Монополию».

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что это

Эти прогнозы и правда полезны?

Да. Очень многие сервисы, к которым мы уже привыкли, создали дата-сайентисты. И вы сталкиваетесь с результатами их работы каждый день. Например, это прогнозы погоды, чат-боты, голосовые помощники… А ещё — алгоритмы, рекомендующие музыку и видео под вкус конкретного пользователя. Список возможных друзей в социальных сетях — тоже результат Data Science. В основе поисковых систем и программ для распознавания лиц тоже лежат алгоритмы, написанные дата-сайентистами.

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что это

То есть Data Science — то же самое, что и обычная бизнес-аналитика?

Нет, это не одно и то же. Основная разница заключается в результате. Data Scientist ищет в массивах данных связи и закономерности, которые позволят ему создать модель, предсказывающую результат, — то есть можно сказать, что Data Scientist работает на будущее. Он использует программные алгоритмы и математическую статистику и решает поставленную задачу в первую очередь как техническую.

Бизнес-аналитик сосредоточен не столько на технической, программной стороне задачи, сколько на коммерческих показателях компании. Он работает со статистикой и может оценить, например, насколько эффективна была рекламная кампания, сколько было продаж в предыдущем месяце и так далее. Вся эта информация может использоваться для улучшения бизнес-показателей компании. Если данных много и нужен какой-то прогноз или оценка, то для решения технической стороны этой задачи бизнес-аналитик может привлечь дата-сайентистов.

Поясним на примере. Допустим, программа анализирует финансовые операции клиента и рекомендует выдать ему кредит или отказать. То есть задача программы — оценить платёжеспособность клиента. Создание такого програмного алгоритма — работа дата-сайентиста.

А бизнес-аналитик не занимается такими техническими задачами. Его не интересует работа с конкретным клиентом, но он может проанализировать всю статистику банка по кредитам, например, за последние три месяца — и рекомендовать банку сократить или увеличить объёмы кредитования. Это бизнес-задача: предлагаются действия, которые увеличат доходность банка либо снизят финансовые риски.

Работа бизнес-аналитика и дата-сайентиста нередко пересекается, просто каждый занимается своей частью задачи.

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что это

А где обычно работает Data Scientist?

Вот несколько вариантов:

И это далеко не полный список. Везде, где нужны прогнозы, совершаются сделки или оцениваются риски, пригодится Data Scientist. Вот несколько примеров рабочих моделей. Некоторые неожиданные: например, Corrupt Social Interactions — модель, выявляющая коррупцию в Департаменте строительства (Department of Building) США. Или сервис А Roommate Recommendation — он помогает подобрать соседа по комнате в кампусе или хостеле.

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что это

Понятно. А работу найти легко? Это точно востребовано?

Легко ли найти работу — зависит и от кандидата тоже. Но сама профессия весьма востребована. В 2016 году американская компания Glassdoor опубликовала рейтинг 25 лучших вакансий в США и профессия Data Scientist возглавила этот список. С тех пор востребованность стала даже выше.

Алгоритмы машинного обучения сейчас стремительно развиваются, прогнозы на их основе становятся точнее, а сфер их применения всё больше. Это значит, что у профессии Data Scientist большое будущее.

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что это

Но это за рубежом. А что в России?

У нас спрос на этих специалистов тоже постоянно растёт. Например, в 2018 году вакансий с названием Data Scientist было в 7 раз больше по сравнению с 2015 годом, а в 2019 году рост продолжился.

На середину апреля 2020 года на hh.ru — 323 вакансии с заголовком Data Scientist, из них 204 вакансии — в Москве, 39 — в Санкт-Петербурге и остальные — в других городах.

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что это

А сколько они зарабатывают?

Как и везде, это зависит от опыта работы и навыков дата-сайентиста, особенностей компании и сложности конкретного проекта. Но общий расклад примерно такой (данные приведены по состоянию на февраль 2020 года):

Высококвалифицированные специалисты по Data Science могут получать в месяц 250 тысяч рублей и более.

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что это

Вы сказали, что Data Scientist создаёт программный алгоритм. А что конкретно он делает?

В разных компаниях деятельность дата-сайентиста будет различаться. Однако основные этапы похожи:

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что это

Что нужно знать и уметь, чтобы работать в Data Science?

Если в общих чертах, то нужно знать математику, математическую статистику, программирование, принципы машинного обучения и ту отрасль, где всё это будет использоваться.

И умение работать в команде тоже никто не отменял: дата-сайентисту приходится общаться с разными специалистами.

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что это

Если у меня нет технического образования, то о работе в Data Science лучше не мечтать?

Будем откровенны — гуманитариям осваивать эту профессию может быть непросто: для работы в Data Science нужно хорошее знание математики и программирования. А у гуманитария этих знаний чаще всего нет. И наоборот: чем увереннее вы чувствуете себя в этом уже на старте, тем проще будет учиться.

Однако не стоит опускать руки: очень многое зависит от мотивации, от того, насколько вы готовы восполнять пробелы в своем образовании. Сейчас люди приходят в Data Science с разным бэкграундом и в разном возрасте. Вот пример одной такой истории — возможно, она вас поддержит.

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что это

А с чего лучше начать?

Начать лучше с математики. Очень сложная математика не понадобится, но вы должны свободно ориентироваться в таких понятиях, как производная, дифференциал, определитель матрицы, и в том, что с ними связано. Освоить это вам помогут книги и лекционные курсы. Например, книга «Математический анализ» Липмана Берса, написанная довольно простым языком.

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что это

А что дальше? Там было что-то о статистике?

Да, потому что математическая статистика используется в любой аналитике. И Data Science не исключение. Вот несколько бесплатных курсов, которые помогут вам изучить статистику.

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что это

Кажется, с математической частью закончили. Что по программированию?

Следующим шагом будет изучение Python. Сейчас этот язык программирования, пожалуй, основной инструмент в Data Science. Среди его достоинств — относительная простота и гибкость. Освоить Python вполне по силам новичку, который до того не программировал. Неслучайно этот язык нередко рекомендуют для начинающих.

По Python есть много курсов, как платных, так и бесплатных. Вот один из бесплатных курсов. И ещё один: «Питонтьютор».

У Skillbox тоже есть курс, он называется «Профессия Python-разработчик». Курс платный, длится год, и за это время студенты фактически осваивают с нуля новую профессию (как теорию, так и практику) и собирают личное портфолио — с помощью наставника. Поэтому по окончании курса им уже есть что показать потенциальному работодателю.

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что это

Что учить после Python?

Теперь можно изучать алгоритмы машинного обучения. Когда освоитесь с ними, уже сможете работать в Data Science.

Вот несколько бесплатных онлайн курсов по машинному обучению (много курсов на английском, но кое-что есть и на русском).

Мало знать методы машинного обучения, нужно уметь применять их для решения практических задач. Научиться этому можно на платформе Kaggle, где собрано огромное количество реальных задач.

Если вы хорошо знаете английский, он поможет вам быстрее развиваться в Data Science. Если нет — самое время его выучить.

Big data science что это. Смотреть фото Big data science что это. Смотреть картинку Big data science что это. Картинка про Big data science что это. Фото Big data science что это

Очень много всего. Может быть, есть курсы, где можно освоить сразу всё?

Да, есть и такие. Например, наш курс по Data Science. Он так и называется — «Профессия Data Scientist». На наш курс приходят как люди с опытом в программировании, так и совсем новички, программа курса это учитывает. Обучение длится около года, в нём уже есть все блоки, которые мы описали выше.

Учиться можно онлайн, из любого города. Наши преподаватели — практики с опытом работы 10–15 лет. У вас будет возможность не только освоить теорию, но и практиковаться на реальных задачах, получая рекомендации от наставника. Очень важный бонус — помощь при трудоустройстве.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *