Apfc блок питания что это
Apfc блок питания что это
Ни для кого не секрет, что одним из главных блоков компьютера является блок питания. При покупке мы обращаем свое внимание на различные характеристики: на максимальную мощность блока, характеристики системы охлаждения и на уровань шума. Но не все задаются вопросом что такое PFC?
Итак, давайте разберемся что дает PFC
Применительно к импульсным блокам питания (в системных блоках компьютеров в настоящее время используются БП только такого типа) этот термин означает наличие в блоке питания соответствующего набора схемотехнических элементов.
Собственно фактором или коэффициентом мощности называется отношение активной мощности (мощности, потребляемой блоком питания безвозвратно) к полной, т.е. к векторной сумме активной и реактивной мощностей. По сути коэффициент мощности (не путать с КПД!) есть отношение полезной и полученной мощностей, и чем он ближе к единице – тем лучше.
PFC бывает двух разновидностей – пассивный и активный.
При работе импульсный блок питания без каких-либо дополнительных PFC потребляет мощность от сети питания короткими импульсами, приблизительно совпадающими с пиками синусоиды сетевого напряжения.
Наиболее простым и потому наиболее распространенным является так называемый пассивный PFC, представляющий собой обычный дроссель сравнительно большой индуктивности, включенный в сеть последовательно с блоком питания.
Пассивный PFC несколько сглаживает импульсы тока, растягивая их во времени – однако для серьезного влияния на коэффициент мощности необходим дроссель большой индуктивности, габариты которого не позволяют установить его внутри компьютерного блока питания. Типичный коэффициент мощности БП с пассивным PFC cоставляет всего лишь около 0,75.
Активный PFC представляет собой еще один импульсный источник питания, причем повышающий напряжение.
Как видно, форма тока, потребляемого блоком питания с активным PFC, очень мало отличается от потребления обычной резистивной нагрузки – результирующий коэффициент мощности такого блока может достигать 0,95. 0,98 при работе с полной нагрузкой.
Правда, по мере снижения нагрузки коэффициент мощности уменьшается, в минимуме опускаясь примерно до 0,7. 0,75 – то есть до уровня блоков с пассивным PFC. Впрочем, надо заметить, что пиковые значения тока потребления у блоков с активным PFC все равно даже на малой мощности оказываются заметно меньше, чем у всех прочих блоков.
Такие БП имеют специфическую особенность – их эксплуатация совместно с дешёвыми ИБП, выдающими ступенчатый сигнал при работе от батарей может приводить к сбоям в работе компьютера, поэтому производители рекомендуют использовать в таких случаях ИБП класса Smart, всегда подающие на выход синусоидальный сигнал.
Также использование активного PFC улучшает реакцию блока питания во время кратковременных (доли секунды) провалов сетевого напряжения – в такие моменты блок работает за счет энергии конденсаторов высоковольтного выпрямителя, эффективность использования которых увеличивается более чем в два раза. Ещё одним преимуществом использования активного PFC является более низкий уровень высокочастотных помех на выходных линиях, т.е. такие БП рекомендуются для использования в ПК с периферией, предназначенной для работы с аналоговым аудио/видео материалом.
А теперь немного теории
Обычная, классическая, схема выпрямления переменного напряжения сети 220V состоит из диодного моста и сглаживающего конденсатора. Проблема в том, что ток заряда конденсатора носит импульсный характер (длительность порядка 3mS) и, как следствие этого, очень большим током.
Разные типы разделены цветами:
Для БП без PFC или с декоративным пассивным PFC эту роль выполняет специальный терморезистор с положительным сопротивлением, т.е. его сопротивление сильно возрастает при нагревании. При большом токе такой элемент очень быстро нагревается и величина тока уменьшается, в дальнейшем он охлаждается из-за уменьшения тока и никакого влияния на схему не оказывает. Т.о., терморезистор выполняет свои ограничивающие функции только при очень больших, стартовых токах.
Для пассивных PFC импульс тока при включении не так велик и терморезистор зачастую не выполняет свою ограничивающую функцию. В нормальных, больших пассивных PFC кроме терморезистора ставится еще специальная схема, а в «традиционных», декоративных этого нет.
И по самим графикам. Декоративный пассивный PFC дает всплеск напряжения, что может привести к пробою силовой схемы БП, усредненное напряжение несколько меньше случая без_PFC и при кратковременном пропадании питания напряжение падает на бОльшую величину, чем без_PFC. На лицо явное ухудшение динамических свойств. Нормальный пассивный PFC также имеет свои особенности. Если не учитывать начального всплеска, который в обязательном порядке должен быть компенсирован последовательностью включения, то можно сказать следующее:
— Выходное напряжение стало меньше. Это правильно, ведь оно равно не пиковому входному, как для первых двух типов БП, а «действующему». Отличие пикового от действующего равно корню из двух.
Пульсации выходного напряжения значительно меньше, ведь часть сглаживающих функций переходит на дроссель.
— Провал напряжения при кратковременном пропадании напряжения также меньше по той же причине.
— После провала следует всплеск. Это очень существенный недостаток и это основная причина, почему пассивные PFC не распространены. Этот всплеск происходит потому же, почему он происходит при включении, но для случая начального включения специальная схема может что-то откорректировать, то в работе это сделать много труднее.
— При кратковременном пропадании входного напряжения выходное меняется не так резко, как в других вариантах БП. Это очень ценно, т.к. медленное изменение напряжения схема управления БП отрабатывает весьма успешно и никаких помех на выходе БП не будет.
Для других вариантов БП при подобных провалах на выходах БП обязательно пойдет помеха, что может сказаться на надежности функционирования. Как часты кратковременные пропадания напряжения? По статистике, 90% всех нестандартных ситуаций с сетью 220V приходится как раз на такой случай. Основной источник возникновения, это переключения в энергосистеме и подключение мощных потребителей.
На рисунке показана эффективность PFC по уменьшению импульсов тока:
Для БП без PFC сила тока достигает 7.5A, пассивный PFC уменьшает ее в 1.5 раза, а нормальный PFC уменьшает ток значительно больше.
Работа схем активной коррекции фактора мощности в блоках питания
Блок питания в компьютере является одним из самых важных компонентов. От его качества в большой степени зависит надежность работы и безотказность дорогостоящих видеокарт, выполняющих вычисления при майнинге.
При подборе комплектующих для сборки майнинг рига следует обращать особое внимание на выбор качественного блока питания. Дешевое устройство может с легкостью отправить в мир иной дорогостоящее оборудование, поэтому экономия в этом случае не всегда оправдана.
К сожалению, даже качественные блоки питания (БП) иногда выходят из строя. В случае использования хорошего БП последствия для остального оборудования обычно не столь печальны, но все же ощутимы из-за вынужденных простоев и трат на приобретение нового блока.
Неотъемлемой частью всех относительно мощных импульсных блоков питания (выше 75 ватт) является схема, отвечающая за коррекцию фактора мощности. Она нужна для обеспечения полноценного отбора мощности из сети переменного тока.
Очень часто в современных компьютерных блоках питания используются APFC (Active Power Correction Circuit) — схемы коррекции, работающие в активном режиме с повышающим преобразованием. Они выполняют задачу по синхронизации фаз тока и напряжения высоковольтной части блока питания, которая возникает из-за зарядки-разрядки конденсатора, сглаживающего пульсации.
Упрощенная схема APFC с boost-преобразованием с помощью накопления энергии на катушке индуктивности:
Электронные элементы APFC работают на высоких напряжениях, подвергаются повышенной температурной и токовой нагрузке из-за чего достаточно часто выходят из строя. В связи с этим стоит разобраться с принципами их работы и возможными проблемами. В данной статье рассматриваются некоторые аспекты работы схем активной коррекции фактора мощности компьютерных импульсных блоков питания.
Общие сведения о схемах коррекции активной мощности
Коррекция коэффициента мощности обычно производится на входе высоковольтной части блока питания, до сглаживающего конденсатора на ее выходе. Существует множество различных топологий схем PFC с активной и пассивной коррекцией:
По ряду причин в компьютерных блоках питания обычно используются активные корректоры мощности, работающие в импульсном режиме с повышением напряжения.
Блок-схемы коррекции активной мощности (boost, dual boost bridgless и totem-pole bridgless) с контроллерами фирмы Texas Instruments:
Типовая схема boostPFC-корректора (с импульсным повышающим преобразователем) с ключом на сдвоенном полевом транзисторе:
Схемы, в которых используется повышающая катушка индуктивности с мостовым выпрямителем на входе блока питания являются одними из самых распространенных. Они имеют эффективность порядка 95-97% и состоят из относительно дешевых компонентов. Потери энергии в таких цепях зависят от 4 факторов:
Рассмотрим подробнее особенности работы классической схемы активной коррекции с импульсным повышающим преобразователем (boost-APFC).
Как работает схема активной коррекции мощности с boost-конвертером?
Чаще всего в мощных компьютерных блоках питания используется схема активной boost PFC-коррекции (с импульсным повышающим преобразователем) с накопительной катушкой индуктивности L, работа которой управляется силовым ключом S1. Ее энергия используется для постоянного заряда выходного конденсатора C импульсами, амплитуда которых меняется в соответствии с синусоидальной формой входного напряжения:
Ток в этой схеме протекает поочередно:
На практике в качестве ключа S2 используется диод с малым сопротивлением при прямом включении:
Два состояния, в которых находится схема с импульсным повышающим преобразованием напряжения:
Изменяя время On и Off-state с помощью импульсов ШИМ, можно управлять зарядным током конденсатора, приводя его в соответствие с входным синусоидальным напряжением:
Это позволяет снизить до минимума реактивные потери и обеспечить равномерную нагрузку на сеть. Кроме того, такая схема обеспечивает стабильность напряжений на выходе блока питания даже при значительных колебаниях входного напряжения.
В схеме импульсного повышающего преобразования обязательно используется контроллер (Control Circuit), управляющий работой ключевого транзистора:
В работе классической схемы активной boost-коррекции мощности участвуют:
В приведенной выше схеме контролирующий узел постоянно производит измерение входного напряжения (вывод 2 контроллера), а также тока через шунт на выводах 3 и 11. Полученные данные используются для управления временем переключения и скважностью (duty cycle) импульсов на ключевом транзисторе Q1.
Схема управления на основании действующего значения напряжения Vg(t) и тока Ig(t) формирует ШИМ-сигнал, управляющий открытием и закрытием ключевого транзистора.
Периодическое замыкание/размыкание транзисторного ключа обеспечивает заряд выходного конденсатора пульсирующим током в соответствии с формой входного синусоидального напряжения:
Осциллограммы напряжений и токов на элементах активного корректора мощности:
Использование сигнала обратной связи с выхода схемы коррекции мощности позволяет осуществить стабилизацию выходного напряжения. Для этого обычно используются резисторы обратной связи Roc1, Roc2 и перемножитель выпрямленного и выходного напряжения:
В блоках питания, питающихся от сети 220В, величина напряжения на выходе схемы APFC для обеспечения запаса по регулированию достигает 400В. Для получения квазисинусоидальной формы тока на выходе корректора мощности используют достаточно высокие частоты коммутации ключа (обычно от 300 КГц до 1 МГц).
Протекание тока в схеме boost-APFC с мостовым выпрямителем и сдвоенными ключевыми транзисторами и диодами (рисунки a и c — On-state, b и d — Off-state):
Исходя из того, что наибольшая нагрузка в схеме APFC приходится на ключевые транзисторы и диоды, именно они, а также микросхема-контроллер, чаще всего выходят из строя.
Элементная база, использующаяся в APFC-цепях блоков питания
Для обеспечения накопления отдачи энергии, дроссель схемы APFC должен иметь достаточную индуктивность (количество витков ) и размер сердечника для накопления магнитной энергии, а также диаметр провода, соответствующий протекающему току. Для выполнения этих требований он должен иметь большие размеры.
Накопительная катушка в БП Be Quiet Dark Power Pro 11 мощностью 1200 ватт выделяется внушительными габаритами:
Для обеспечения большой отдаваемой мощности в схему APFC блока питания устанавливают по нескольку ключевых транзисторов и диодов.
Два диода Шоттки CREE C3D06060G (600 вольт/9.5 ампер) и три N-канальных Mdmesh силовых MOSFET-транзистора 31N65M5 (31A 650V) 1200-ваттного блока питания Be Quiet Dark Power Pro 11:
Цоколевка транзисторов 31N65M5:
Цоколевка диодов C3D06060G:
В блоке питания той же серии на 850 ватт используется два полевых транзистора Infineon IPA60R165CP и диод CREE C3D06060G (слева):
В качестве контроллера APFC-схемы в БП Be Quiet Dark Power Pro 11 используется микросхема Infineon ICE2PCS02:
Назначение пинов у ШИМ-контроллера ICE2PCS02 (вид сверху):
Блок-схема контроллера ICE2PCS02 и его типовое включение:
Место контроллера ICE2PCS02 в схеме boostAPFC:
Примеры схем активной коррекции фактора мощности
Пример схемы APFC блока питания на 300 ватт с микросхемой ICE2PCS02:
Пример схемы активной коррекции фактора мощности на микросхеме UCC28019:
Схема активной коррекции фактора мощности в следующем примере состоит из параллельно включенных MOSFET-ов Q3 и Q10, индуктивности L11, диода D27 и накопительных конденсаторов C4 и C5:
Еще одна схема, отвечающая за коррекцию фактора мощности:
Для защиты блока питания от чрезмерной нагрузки в этом блоке в момент включения используется терморезистор RT1 сопротивлением 2.5 Ом. Сигнал VCCP включает реле RL1 (модель 835NL-1A-B-C с нормально разомкнутыми контактами) только после перехода блока питания в рабочий режим. В момент включения ток проходит через защитный терморезистор, что уменьшает нагрузку на БП. Аналогичные решения используются во многих качественных блоках питания, например, в БП Be Quiet Dark Power Pro 11, где используется реле 507-1CH-F-C.
Правильное питание — залог здоровья. Выбираем блок питания. Часть 1. Практикум
Приведем небольшой пример. Если вы собираетесь покупать автомобиль, то вы прекрасно понимаете, что собираетесь использовать его прежде всего в качестве средства передвижения. Для этого машине нужно качественное топливо. В противном случае вам не избежать дорогостоящего ремонта. С компьютером происходит все то же самое. Для стабильной работы ему нужно электрическое питание. Выходит, что «неофициально» блок питания является важнейшим элементом любого десктопа.
В данной статье мы постараемся доказать, что покупка дешевых «кормушек» может привести к нежелательным последствиям, а также развенчать некоторые мифы, буквально ставящие пользователей в тупик.
Блок питания — не роскошь. Но и не устройство, которым можно пренебречь!
Конструкция блока питания
Так как сейчас доминирующим форматом блоков питания является ATX, то мы будем рассматривать именно его. Подготавливая этот материал, мы не руководствовались желанием показать вам углубленную структуру современных БП, так как вытекающий из этого объем информации может просто-напросто отбить у вас всякий интерес к чтению.
Любой блок питания условно можно разделить на несколько функциональных частей: фильтр электромагнитных помех, выпрямитель, схема APFC, дежурный источник питания, инвертор, выпрямитель и фильтр выходных напряжений, схема защиты и выключения, ШИМ-контроллер. Также в последнее время все чаще в современных «кормушках» встречаются отдельные схемы управления скоростью вращения вентилятора. Эти узлы в той или иной мере взаимосвязаны друг с другом и расположены на печатной плате, прикрученной к днищу корпуса.
Структурная схема блока питания
В качестве примера мы использовали фотографию Thermaltake TR2 550W — недорогого, но популярного в России блока питания.
Компонентная база Thermaltake TR2 550W
Элементы Thermaltake TR2 550W: сетевой разъем (1), Х-конденсатор сетевого фильтра (2), предохранитель входной цепи (3), варистор (4), Х-конденсатор низкочастотного фильтра (5), дроссели низкочастотного фильтра (6), Y-конденсаторы низкочастотного фильтра (7), диодный мост (8), два полевых транзисторы APFC (9), быстрый диод APFC (10), электролитический конденсатор APFC (11), дроссель APFC (12), модуль управления APFC/PWM (13), согласующий трансформатор инвертора (14), радиатор с двумя силовыми ключами инвертора (15), модуль управления источника дежурного питания с ШИМ-драйвером и полевым транзистором (16), импульсный трансформатор источника дежурного напряжения (17), импульсный трансформатор главного инвертора (18), диод Шоттки источника дежурного напряжения (19), электролитический конденсатор фильтра ИДН (20), оптроны обратной связи (21), диод Шоттки шины +3,3V (22), выпрямительные диоды шины +12V (23), радиатор охлаждения вторичной цепи (24), супервизор (25), разъем подключения термодатчика (26), электролитические конденсаторы высокочастотного фильтра (27), биполярный транзистор для управления скоростью вращения вентилятора (28), плата для подключения отстегивающихся кабелей (29), дроссель групповой стабилизации +12V и +5V (30).
EMI-фильтр
На входе БП расположен фильтр ЭМП (электромагнитных помех). Так как компьютерный блок питания является импульсным, он генерирует высокочастотные шумы в сеть.
Существуют две составляющие электромагнитной помехи: синфазная и дифференциальная. Синфазная помеха не связана с заземлением и проходит по линии питания. Дифференциальная появляется между одним из проводов сети и «землей». Для подавления первой составляющей используются Х-конденсаторы и дроссели с встречными обмотками, для второй — Y-конденсаторы и проходные дроссели. Обычно конденсаторы встречаются как на входном разъеме питания 220 В, так и на плате, образуя фильтр кондуктивных шумов.
Для уменьшения излучаемых помех служит сам корпус блока питания, изготовленный из металлических сплавов. Здесь же расположен варистор для защиты первичной части БП от перенапряжения, а также предохранитель, разрывающий цепь при коротком замыкании и/или перегрузке.
Выпрямитель
Затем отфильтрованный переменный ток преобразуется в постоянный с помощью выпрямительного диодного моста, как правило, прикрепленного к радиатору. В дешевых блоках питания используются четыре обычных диода, образующих мост, что сказывается на использовании свободного пространства на плате и надежности.
Инвертор
Инвертор является главным силовым преобразователем любого блока питания. Он состоит из трансформатора, согласующего каскада, ШИМ-микросхемы и силовых ключей. Управляющая микросхема в последнее время перекочевала в комбо-модуль PWM+APFC, представляющий собой дочернюю плату, однако существует еще достаточно БП, где она представлена в отдельном виде. Суть ее работы довольно проста: она регулирует время открытого состояния силовых транзисторов, путем подачи сигналов на их затворы. Грубо говоря, чем дольше открыт ключ, тем больше энергии передаст трансформатор. Работают транзисторы попарно (когда один открыт, другой закрыт, и наоборот), так как в большинстве своем инверторы — двухтактные. И делается это десятки, а то и сотни тысяч раз в секунду.
Выходной выпрямитель и узел фильтрации
Блок выпрямителей и фильтрующих элементов как правило состоит из диодов Шоттки, электролитических конденсаторов и дросселя групповой стабилизации. В разных БП по-разному реализована элементная база, и вышесказанное необязательно является примером. В классическом исполнении напряжения 12 В, 5 В и 3,3 В снимаются со вторичных обмоток импульсного трансформатора и выпрямляются своими диодными сборками.
В последнее время диоды активно заменяются полевыми транзисторами, в виду чего снижаются потери и вторичная цепь напрочь лишается радиаторов охлаждения. К тому же «вторичкой» осталась только 12 В, которая является несущей шиной вторичного напряжения. От нее непосредственно формируются +3,3 В и +5 В.
Защитный узел
Схема защиты в настоящее время реализована на микросхеме супервизора. Она постоянно мониторит выходные напряжения +3,3V, +5V и +12V и в случае выхода значений за пределы снимает сигнал Power Good, тем самым завершая работу компьютера. Основными ее функциями является защита от перегрузки, а также пониженного и повышенного напряжения.
Разъемы блока питания
Все коннекторы компонентов компьютера унифицированы, поэтому распиновка разъемов блоков питания также стандартная. На изображении ниже вы можете увидеть расположение отдельных гнезд в соответствии со стандартом ATX. Слева расположен 20-контактный коннектор, поддерживаемый бюджетными материнскими платами, а справа — более распространенный 24-пиновый. Как видно, отличаются они лишь наличием дополнительных проводов питания +12V, +5V, +3,3V и «земли».
Распиновка всех разъемов БП
Все разъемы имеют ключи, препятствующие неправильному подключению, хотя на практике особо усердные уникумы умудряются все же воткнуть их «вверх ногами». SATA-коннектор имеет Г-образный корпус, а вот у MOLEX-разъема в роли «защиты от дурака» выступают уголки по краям корпуса. У коннекторов для подключения дополнительного питания +12V и материнской платы ключами являются сами пины.
Если говорить о принадлежности каждого типа разъема к подключаемому устройству, то название, как правило, говорит само за себя. Например, SATA предназначен для подключения девайсов с одноименным интерфейсом.
Коннектор SATA блока питания
Коннекторы MOLEX блока питания
Дополнительное питание CPU бывает двух видов: 4- и 8-пиновые в зависимости от мощности блока питания. Коннекторы PCI-E бывают 6- или 8-пиновые и служат для подключения высокопроизводительных карт расширения, среди которых особо выделяются видеокарты. Для питания наиболее производительных решений может потребоваться до трех 8-пиновых разъемов. Поэтому при выборе блока питания всегда следует учитывать количество коннекторов.
Коннектор питания CPU
Коннектор питания PCI-E
Отметим, что «кормушки» бывают как модульные, так и немодульные, то есть в некоторых устройствах неиспользуемые кабели можно отсоединить.
Корпус полностью модульного блока питания
Еще один важный момент — длина проводов. Как правило, производитель это в технических характеристиках. В некоторых случаях длины кабеля может не хватить, что провести его через все шасси корпуса к нужному коннектору на материнской плате.
Стандарты блоков питания
Существует достаточно много стандартов исполнения «кормушек». Они унифицированы для конкретных инженерных решений, будь то сервер, домашний десктоп или медиацентр. Это очень удобно, ведь зная форм-фактор вашего блока питания, вы без труда можете подобрать комплектующие, соответствующие ему. Мы не будем заострять наше внимание на устаревших и редких стандартах.
ATX12V 2.0
Этот стандарт относится к ATX, что видно из названия. Главное отличие второй ревизии — наличие сразу двух шин +12V. Связано это в первую очередь с требованиями безопасности, согласно которым мощность цепи, к которой имеется открытый доступ для оператора, не должна превышать 240 ВА, то есть не больше 240/12=20 А. При этом производителям блоков питания был предоставлен широкий простор для выбора различных вариаций мощности, но с обязательным регламентированием максимальных токов по линиям.
EPS12V
Это серверный стандарт, использующийся в вычислительных системах начального уровня. Однако он совместим с форм-фактором ATX12V 2.0 и поэтому может применяться в домашних компьютерах. Следует учесть, что блоки питания данного формата имеют вытянутую форму глубиной 180 мм или 230 мм.
Эффективность блока питания
APFC (активная коррекция коэффициента мощности) заменила в современных блоках питания устаревшую PPFC, то есть пассивную коррекцию. Связано это в первую очередь с относительно низким коэффициентом мощности у PPFC (всего лишь 0,6). Например, APFC имеет 0,9, что ближе к идеалу.
Почему же в последнее время все больше и больше внимания уделяется увеличению коэффициента мощности? Раньше этому не уделялось должное внимание в виду меньшей загруженности сетей. А когда в нашу эпоху электрификации и обилия всевозможных приборов резко встал вопрос об эффективном использовании ресурсов, инженеры вспомнили о КМ. Суть проблемы заключается в том, что помимо полезной части электрического тока, существует и реактивная его составляющая. В ней то и «зарыта собака». Она не делает полезной работы, зато нагревает проводники и увеличивает общую нагрузку на сеть. Например, мы имеем компьютер, потребляющий 200 Вт, и блок питания с КМ 0,6. В итоге из домашней сети ПК потребляет 200/0,6=333 Вт, то есть 133 Вт реактивной мощности рассеивается в виде тепла. Соответственно и платить вы будете больше. Но если применить блок питания с APFC, то полная мощность будет равна 200/0,9=222 Вт, то есть всего 22 Вт реактивной мощности!
В США и странах Европы цены за электроэнергию очень высокие. У нас — консервативные. Однако рано или поздно и нам придется экономить.
Также блоки питания с APFC имеют лучшую помехоустойчивость, высокий коэффициент стабилизации и КПД, низкий коэффициент пульсаций выходных напряжений, меньшее влияние на внешнюю сеть. Устройства способны работать в диапазоне напряжений 110-250 В.
Кстати, мы опустили факт лишнего нагрева проводки, так как ПК — далеко не самое «прожорливое» устройство в квартире.
Спецификация 80 PLUS
Стандарт энергосбережения Energy Star 4.0, принятый в 2007 году, включает в себя программу 80 PLUS, подразумевающую проверку блоков питания на соответствие нормам энергоэффективности. К ним относятся коэффициент полезного действия (отношение выходной мощности к потребляемой) и коэффициент мощности (отношение активной мощности к полной). Согласно 80 PLUS, КПД должен быть не ниже 80% при 20%, 50% и 100% нагрузке относительно номинальной мощности блока питания. Ниже представлена таблица сертификатов эффективности при номинальном напряжении 230 В.
Один из важнейших критериев выбора блока питания: наличие сертификатов 80 PLUS Gold, 80 PLUS Platinum и 80 PLUS Titanium. Оно свидетельствует о том, что при сборке устройства использованы высококачественные элементы.
Напряжение в электросети, 230В | |||
Процент от номинальной нагрузки | 20% | 50% | 100% |
80 PLUS | — | — | — |
80 PLUS Bronze | 81% | 85% | 81% |
80 PLUS Silver | 85% | 89% | 85% |
80 PLUS Gold | 88% | 92% | 88% |
80 PLUS Platinum | 90% | 94% | 91% |
80 PLUS Titanium | 94% | 96% | 91% |
Любопытно, что на выставке CES 2014 был представлен блок питания Corsair AX1500i мощностью 1500 Вт, имеющего сертификат 80 PLUS Titanium! Пока еще рано делать конкретные выводы об этом устройстве. Известно лишь о том, что «кормушка» поступит в продажу не ранее второго квартала текущего года.
Мифы о блоках питания
Чем больше вес, тем качественнее блок питания
Это уже устаревшее определение качества БП, ничего общего не имеющее с реальностью. Если раньше это высказывание опиралось на факты, то сейчас они говорят о другом. Раньше КПД блоков питания был относительно низкий, поэтому на внутренних компонентах выделялось большое количество тепла. Для предотвращения их перегрева использовались массивные радиаторы, которые и составляли львиную долю веса всего БП.
В современных устройствах (ввиду высокого КПД) нагрев элементов несущественный, поэтому зачастую можно встретить блоки питания без радиаторов во вторичной цепи.
Также на уменьшении потерь сказывается использование APFC, улучшение характеристик импульсных трансформаторов, замена выпрямительных диодов на полевые транзисторы. Последнее связано с тем, что у MOSFET-ов сопротивление канала в открытом состоянии составляет доли Ома, что ведет к снижению выделяемой на них мощности. Стоит отметить, что высокая частота работы инверторов также привела к уменьшению размеров компонентов.
Многообещающая компонентная база
Многим компьютерным пользователям известны различные уловки производителей по привлечению покупательского спроса. Самые распространенные из них украшают упаковки: применение «японских» и твердотельных конденсаторов (очень часто — «японских» твердотельных), возможность работать в экстремальных условиях, дроссели с ферритовым сердечником, наличие всевозможных защит.
Все вышеперечисленное, конечно же, является огромным плюсом, но всегда ли это совпадает с реальностью? У хороших фирм — да. Однако уловка заключается в следующем: «японские» и полимерные конденсаторы, дроссели с ферритовым сердечником присутствуют внутри, но их количество — минимальное. Вся остальная «рассыпуха» может быть представлена бюджетными элементами.
А зачем обычному пользователю блок питания с «возможностью работы в экстремальных условиях»? Большинство пользователей разве работает дома при минусовых температурах или, наоборот, при аномально высокой жаре? Лишь за редким исключением. Вердикт таков: индустриальный класс устройств должен применяться по назначению, а не быть навязан домашнему пользователю.
Обилие защит, ярко расписанное маркетологами компаний, ровным счетом ни о чем не говорит. Стандарт ATX предусматривает проверку всех БП на соответствие требованиям безопасности. В противном случае непрошедшие контроль качества устройства просто не поступят в продажу. Маркетинг.
Миф о многоканальных и одноканальных шинах +12V
Эта тема настолько обширная и настолько запутанная, что в рамках статьи невозможно описать все предубеждения, связанные с этим мифом. Внесем лишь одну ясность. Любой БП имеет шину +12V. Согласно стандарту ATX, максимальный ток на одной линии не должен превышать 20 А. Инженеры, «обманывая» регламентированные требования, пошли на ухищрение и снабдили БП виртуальными шинами, каждая из которых питает отельную группу разъемов блока питания. Однако они зашунтированы и запитаны все от того же канала +12V.
В последнее время все чаще встречаются многоканальные БП с ограничением тока по каждой линии в 30 А. В этих устройствах линии сгруппированы для того, чтобы превысить нормы стандарта ATX, не нарушая их. Однако все они изначально связаны с одной единственной несущей шиной!
Для блоков питания с APFC требуется UPS с синусоидальной формой напряжения на выходе
Совместимость источников бесперебойного питания и БП с активным корректором коэффициента мощности давно обсуждается в интернете. Однако стоит расставить все точки над i. Несовместимость UPS и APFC-блока кроется в больших пусковых токах, так как последний фактически работает в режиме высокочастотного короткого замыкания. Поэтому советуем вам присмотреться к покупке «бесперебойника» с двукратным запасом мощности. В противном случае UPS может просто уйти в защиту.
Как выбрать качественный блок питания?
Конечно, о блоках питания не так интересно читать, как, например, о видеокартах. Однако, когда в этом появляется необходимость, то на помощь приходят обзоры, обзоры и еще раз обзоры.